|
ANTARES Collaboration(Adrian-Martinez, S. et al), Barrios-Marti, J., Hernandez-Rey, J. J., Illuminati, G., Sanchez-Losa, A., Tönnis, C., et al. (2016). Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope. Phys. Lett. B, 759, 69–74.
Abstract: A search for muon neutrinos originating from dark matter annihilations in the Sun is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. In order to obtain the best possible sensitivities to dark matter signals, an optimisation of the event selection criteria is performed taking into account the background of atmospheric muons, atmospheric neutrinos and the energy spectra of the expected neutrino signals. No significant excess over the background is observed and 90% C.L. upper limits on the neutrino flux, the spin-dependent and spin-independent WIMP-nucleon cross-sections are derived for WIMP masses ranging from 50 GeV to 5 TeV for the annihilation channels WIMP + WIMP -> b (b) over bar, W+W- and tau(+)tau(-).
|
|
|
ANTARES Collaboration(Albert, A. et al), Barrios-Marti, J., Hernandez-Rey, J. J., Illuminati, G., Lotze, M., Tönnis, C., et al. (2017). Results from the search for dark matter in the Milky Way with 9 years of data of the ANTARES neutrino telescope. Phys. Lett. B, 769, 249–254.
Abstract: Using data recorded with the ANTARES telescope from 2007 to 2015, a new search for dark matter annihilation in the Milky Way has been performed. Three halo models and five annihilation channels, WIMP + WIMP -> b (b) over bar, W+W-, tau(+)tau(-), mu(+)mu(-) and v (v) over bar, with WIMP masses ranging from 50 2 GeV/C-2 to 100 Tev/C-2, were considered. No excess over the expected background was found, and limits on the thermally averaged annihilation cross-section were set.
|
|
|
ANTARES Collaboration(Albert, A. et al), Barrios-Marti, J., Hernandez-Rey, J. J., Illuminati, G., Lotze, M., Tönnis, C., et al. (2017). Search for dark matter annihilation in the earth using the ANTARES neutrino telescope. Phys. Dark Universe, 16, 41–48.
Abstract: A search for a neutrino signal from WIMP pair annihilations in the centre of the Earth has been performed with the data collected with the ANTARES neutrino telescope from 2007 to 2012. The event selection criteria have been developed and tuned to maximise the sensitivity of the experiment to such a neutrino signal. No significant excess of neutrinos over the expected background has been observed. Upper limits at 90% C.L. on the WIMP annihilation rate in the Earth and the spin independent scattering cross-section of WIMPs to nucleons sigma(SI)(p) were calculated for WIMP pair annihilations into either iota(+) iota(-), W+W-, b (b) over bar or the non-SUSY v mu(v) over bar as a function of the WIMP mass (between 25 GeV/c(2) and 1000 GeV/c(2)) and as a function of the thermally averaged annihilation cross section times velocity <sigma A(v)>(Earth) of the WIMPs in the centre of the Earth. For masses of the WIMP close to the mass of iron nuclei (50 GeV/c(2)), the obtained limits on sigma(SI)(p) are more stringent than those obtained by other indirect searches.
|
|
|
Khosa, C. K., Mars, L., Richards, J., & Sanz, V. (2020). Convolutional neural networks for direct detection of dark matter. J. Phys. G, 47(9), 095201–20pp.
Abstract: The XENON1T experiment uses a time projection chamber (TPC) with liquid xenon to search for weakly interacting massive particles (WIMPs), a proposed dark matter particle, via direct detection. As this experiment relies on capturing rare events, the focus is on achieving a high recall of WIMP events. Hence the ability to distinguish between WIMP and the background is extremely important. To accomplish this, we suggest using convolutional neural networks (CNNs); a machine learning procedure mainly used in image recognition tasks. To explore this technique we use XENON collaboration open-source software to simulate the TPC graphical output of dark matter signals and main backgrounds. A CNN turns out to be a suitable tool for this purpose, as it can identify features in the images that differentiate the two types of events without the need to manipulate or remove data in order to focus on a particular region of the detector. We find that the CNN can distinguish between the dominant background events (ER) and 500 GeV WIMP events with a recall of 93.4%, precision of 81.2% and an accuracy of 87.2%.
|
|
|
Loya Villalpando, A. A., Martin-Albo, J., Chen, W. T., Guenette, R., Lego, C., Park, J. S., et al. (2020). Improving the light collection efficiency of silicon photomultipliers through the use of metalenses. J. Instrum., 15(11), P11021–13pp.
Abstract: Metalenses are optical devices that implement nanostructures as phase shifters to focus incident light. Their compactness and simple fabrication make them a potential cost-effective solution for increasing light collection efficiency in particle detectors with limited photosensitive area coverage. Here we report on the characterization and performance of metalenses in increasing the light collection efficiency of silicon photomultipliers (SiPM) of various sizes using an LED of 630 nm, and find a six to seven-fold increase in signal for a 1.3 x 1 3 mm(2) SiPM when coupled with a 10-mm-diameter metalens manufactured using deep ultraviolet stepper lithography. Such improvements could be valuable for future generations of particle detectors, particularly those employed in rare-event searches such as dark matter and neutrinoless double beta decay.
|
|
|
NEXT Collaboration(Renner, J. et al), Alvarez, V., Carcel, S., Cervera-Villanueva, A., Diaz, J., Ferrario, P., et al. (2015). Ionization and scintillation of nuclear recoils in gaseous xenon. Nucl. Instrum. Methods Phys. Res. A, 793, 62–74.
Abstract: Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope a-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.
|
|
|
Rebel, B., Hall, C., Bernard, E., Faham, C. H., Ito, T. M., Lundberg, B., et al. (2014). High voltage in noble liquids for high energy physics. J. Instrum., 9, T08004–57pp.
Abstract: A workshop was held at Fermilab November 8-9, 2013 to discuss the challenges of using high voltage in noble liquids. The participants spanned the fields of neutrino, dark matter, and electric dipole moment physics. All presentations at the workshop were made in plenary sessions. This document summarizes the experiences and lessons learned from experiments in these fields at developing high voltage systems in noble liquids.
|
|
|
XENON Collaboration(Aprile, E. et al), & Orrigo, S. E. A. (2014). Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment. J. Instrum., 9, P11006–20pp.
Abstract: XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2.10(47) cm(2) for WIMP masses around 50 GeV/c(2), which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of similar to 10m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (> 99.5%) and showers of secondary particles from muon interactions in the rock (> 70%). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.
|
|