|
Agaras, M. N. et al, & Fiorini, L. (2023). Laser calibration of the ATLAS Tile Calorimeter during LHC Run 2. J. Instrum., 18(6), P06023–35pp.
Abstract: This article reports the laser calibration of the hadronic Tile Calorimeter of the ATLAS experiment in the LHC Run 2 data campaign. The upgraded Laser II calibration system is described. The system was commissioned during the first LHC Long Shutdown, exhibiting a stability better than 0.8% for the laser light monitoring. The methods employed to derive the detector calibration factors with data from the laser calibration runs are also detailed. These allowed to correct for the response fluctuations of the 9852 photomultiplier tubes of the Tile Calorimeter with a total uncertainty of 0.5% plus a luminosity-dependent sub-dominant term. Finally, we report the regular monitoring and performance studies using laser events in both standalone runs and during proton collisions. These studies include channel timing and quality inspection, and photomultiplier linearity and response dependence on anode current.
|
|
Balbinot, R., & Fabbri, A. (2024). The Unruh Vacuum and the “In-Vacuum” in Reissner-Nordström Spacetime. Universe, 10(1), 18–14pp.
Abstract: The Unruh vacuum is widely used as a quantum state to describe black hole evaporation since, near the horizon, it reproduces the physical state of a quantum field, the so-called “in-vacuum”, in the case where a black hole is formed by gravitational collapse. We examine the relation between these two quantum states in the background spacetime of a Reissner-Nordstrom black hole (both extremal and not), highlighting the similarities and striking differences.
|
|
Fernandes, L. M. P., Freitas, E. D. C., Ball, M., Gomez-Cadenas, J. J., Monteiro, C. M. B., Yahlali, N., et al. (2010). Primary and secondary scintillation measurements in a Xenon Gas Proportional Scintillation Counter. J. Instrum., 5, P09006–15pp.
Abstract: NEXT is a new experiment to search for neutrinoless double beta decay using a 100 kg radio-pure high-pressure gaseous xenon TPC. The detector requires excellent energy resolution, which can be achieved in a Xe TPC with electroluminescence readout. Hamamatsu R8520-06SEL photomultipliers are good candidates for the scintillation readout. The performance of this photomultiplier, used as VUV photosensor in a gas proportional scintillation counter, was investigated. Initial results for the detection of primary and secondary scintillation produced as a result of the interaction of 5.9 keV X-rays in gaseous xenon, at room temperature and at pressures up to 3 bar, are presented. An energy resolution of 8.0% was obtained for secondary scintillation produced by 5.9 keV X-rays. No significant variation of the primary scintillation was observed for different pressures (1, 2 and 3 bar) and for electric fields up to 0.8 V cm(-1) torr(-1) in the drift region, demonstrating negligible recombination luminescence. A primary scintillation yield of 81 +/- 7 photons was obtained for 5.9 keV X-rays, corresponding to a mean energy of 72 +/- 6 eV to produce a primary scintillation photon in xenon.
|
|
KM3NeT Collaboration(Aiello, S. et al), Barrios-Marti, J., Calvo, D., Coleiro, A., Colomer, M., Gozzini, S. R., et al. (2018). Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope. J. Instrum., 13, P05035–17pp.
Abstract: The Hamamatsu R12199-023-inch photomultiplier tube is the photodetector chosen for the first phase of the KM3NeT neutrino telescope. About 7000 photomultipliers have been characterised for dark count rate, timing spread and spurious pulses. The quantum efficiency, the gain and the peak-to-valley ratio have also been measured for a sub-sample in order to determine parameter values needed as input to numerical simulations of the detector.
|
|
Lloret, E., Fernandez, A., Trbojevich, R., Arnau, J., & Picouet, P. A. (2016). Relevance of nanocomposite packaging on the stability of vacuum-packed dry cured ham. Meat Sci., 118, 8–14.
Abstract: In this study effects of a novel high barrier multilayer polyamide film containing dispersed nanoclays (PAN) on the stability of vacuum packed dry-cured ham were investigated during 90 days refrigerated storage in comparison with non-modified multilayer polyamide (PA) and a commercial high barrier film. Characteristic bands of the mineral in FT-IR spectra confirmed the presence of nanoclays in PAN, enhancing oxygen transmission barrier properties and UV protection. Packaging in PAN films did not originate significant changes on colour or lipid oxidation during prolonged storage of vacuum-packed dry-cured ham. Larger oxygen transmission rates in PA films caused changes in CIE b* during refrigerated storage. Ham quality was not affected by light exposition during 90 days and only curing had a significant benefit on colour and TBARS, being cured samples more stable during storage in all the packages used. Packaging of dry-cured ham in PAN was equivalent to commercial high barrier films.
|
|
Millar, W. L. et al, & Bañon Caballero, D. (2023). High-Power Test of Two Prototype X-Band Accelerating Structures Based on SwissFEL Fabrication Technology. IEEE Trans. Nucl. Sci., 70(1), 1–19.
Abstract: This article presents the design, construction, and high-power test of two $X$ -band radio frequency (RF) accelerating structures built as part of a collaboration between CERN and the Paul Scherrer Institute (PSI) for the compact linear collider (CLIC) study. The structures are a modified “tuning-free ” variant of an existing CERN design and were assembled using Swiss free electron laser (SwissFEL) production methods. The purpose of the study is two-fold. The first objective is to validate the RF properties and high-power performance of the tuning-free, vacuum brazed PSI technology. The second objective is to study the structures' high-gradient behavior to provide insight into the breakdown and conditioning phenomena as they apply to high-field devices in general. Low-power RF measurements showed that the structure field profiles were close to the design values, and both structures were conditioned to accelerating gradients in excess of 100 MV/m in CERN's high-gradient test facility. Measurements performed during the second structure test suggest that the breakdown rate (BDR) scales strongly with the accelerating gradient, with the best fit being a power law relation with an exponent of 31.14. In both cases, the test results indicate that stable, high-gradient operation is possible with tuning-free, vacuum brazed structures of this kind.
|