|
Pierre Auger Collaboration(Abreu, P. et al), & Pastor, S. (2011). Search for first harmonic modulation in the right ascension distribution of cosmic rays detected at the Pierre Auger Observatory. Astropart Phys., 34(8), 627–639.
Abstract: We present the results of searches for dipolar-type anisotropies in different energy ranges above 2.5 x 10(17) eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% C.L. for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations.
|
|
Pierre Auger Collaboration(Abreu, P. et al), & Pastor, S. (2011). The Lateral Trigger Probability function for the Ultra-High Energy Cosmic Ray showers detected by the Pierre Auger Observatory. Astropart Phys., 35(5), 266–276.
Abstract: In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 10(17) and 10(19) eV and zenith angles up to 65 degrees. A parametrization combining a step function with an exponential is found to reproduce them very well in the considered range of energies and zenith angles. The LTP functions can also be obtained from data
|
|
Pierre Auger Collaboration(Abreu, P. et al), & Pastor, S. (2012). Search for signatures of magnetically-induced alignment in the arrival directions measured by the Pierre Auger Observatory. Astropart Phys., 35(6), 354–361.
Abstract: We present the results of an analysis of data recorded at the Pierre Auger Observatory in which we search for groups of directionally-aligned events (or 'multiplets') which exhibit a correlation between arrival direction and the inverse of the energy. These signatures are expected from sets of events coming from the same source after having been deflected by intervening coherent magnetic fields. The observation of several events from the same source would open the possibility to accurately reconstruct the position of the source and also measure the integral of the component of the magnetic field orthogonal to the trajectory of the cosmic rays. We describe the largest multiplets found and compute the probability that they appeared by chance from an isotropic distribution. We find no statistically significant evidence for the presence of multiplets arising from magnetic deflections in the present data.
|
|
Pierre Auger Collaboration(Abreu, P. et al), & Pastor, S. (2013). Identifying clouds over the Pierre Auger Observatory using infrared satellite data. Astropart Phys., 50-52, 92–101.
Abstract: We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud. identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km(2) of the Pierre Auger Observatory twice per hour with a spatial resolution of similar to 2.4 km by similar to 5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.
|