|
Abada, A., De Romeri, V., Lucente, M., Teixeira, A. M., & Toma, T. (2018). Effective Majorana mass matrix from tau and pseudoscalar meson lepton number violating decays. J. High Energy Phys., 02(2), 169–57pp.
Abstract: An observation of any lepton number violating process will undoubtedly point towards the existence of new physics and indirectly to the clear Majorana nature of the exchanged fermion. In this work, we explore the potential of a minimal extension of the Standard Model via heavy sterile fermions with masses in the [0.1-10] GeV range concerning an extensive array of “neutrinoless” meson and tau decay processes. We assume that the Majorana neutrinos are produced on-shell, and focus on three-body decays. We conduct an update on the bounds on the active-sterile mixing elements, vertical bar U-l alpha 4,U-l beta 4 vertical bar, taking into account the most recent experimental bounds (and constraints) and new theoretical inputs, as well as the effects of a finite detector, imposing that the heavy neutrino decay within the detector. This allows to establish up-to-date comprehensive constraints on the sterile fermion parameter space. Our results suggest that the branching fractions of several decays are close to current sensitivities (likely within reach of future facilities), some being already in conflict with current data (as is the case of K-broken vertical bar -> l(alpha)(broken vertical bar)+l(beta)(+)pi(-), and tau(-)->mu(broken vertical bar)pi(-)pi(-)). We use these processes to extract constraints on all entries of an enlarged definition of a 3 x 3 “effective” Majorana neutrino mass matrix m(v)(alpha beta).
|
|
|
Abbar, S., & Capozzi, F. (2022). Suppression of fast neutrino flavor conversions occurring at large distances in core-collapse supernovae. J. Cosmol. Astropart. Phys., 03(3), 051–13pp.
Abstract: Neutrinos propagating in dense neutrino media such as core-collapse supernovae and neutron star merger remnants can experience the so-called fast flavor conversions on scales much shorter than those expected in vacuum. A very generic class of fast flavor instabilities is the ones which are produced by the backward scattering of neutrinos off the nuclei at relatively large distances from the supernova core. In this study we demonstrate that despite their ubiquity, such fast instabilities are unlikely to cause significant flavor conversions if the population of neutrinos in the backward direction is not large enough. Indeed, the scattering-induced instabilities can mostly impact the neutrinos traveling in the backward direction, which represent only a small fraction of neutrinos at large radii. We show that this can be explained by the shape of the unstable flavor eigenstates, which can be extremely peaked at the backward angles.
|
|
|
Abbas, G. (2016). Right-right-left extension of the Standard Model. Mod. Phys. Lett. A, 31(19), 1650117–10pp.
Abstract: A right-right-left extension of the Standard Model is proposed. In this model, SM gauge group SU(2)(L) circle times U(1)(Y) is extended to SU(2)(L) circle times SU(2)(R) circle times SU(2)'(R) circle times SU(2)'(L) circle times U(1)(Y). The gauge symmetries SU(2)'(R), SU(2)'(L) are the mirror counterparts of the SU(2)(L) and SU(2)(R), respectively. Parity is spontaneously broken when the scalar Higgs fields acquire vacuum expectation values (VEVs) in a certain pattern. Parity is restored at the scale of SU(2)'(L). The gauge sector has a unique pattern. The scalar sector of the model is optimum, elegant and unique.
|
|
|
Abbas, G., Celis, A., Li, X. Q., Lu, J., & Pich, A. (2015). Flavour-changing top decays in the aligned two-Higgs-doublet model. J. High Energy Phys., 06(6), 005–26pp.
Abstract: We perform a complete one-loop computation of the two-body flavour-changing top decays t --> ch and t --> cV (V = gamma, Z), within the aligned two-Higgs-doublet model. We evaluate the impact of the model parameters on the associated branching ratios, taking into account constraints from flavour data and measurements of the Higgs properties. Assuming that the 125 GeV Higgs corresponds to the lightest CP-even scalar of the CP-conserving aligned two-Higgs-doublet model, we find that the rates for such flavour-changing top decays lie below the expected sensitivity of the future high-luminosity phase of the LHC. Measurements of the Higgs signal strength in the di-photon channel are found to play an important role in limiting the size of the t --> ch decay rate when the charged scalar of the model is light.
|
|
|
Abdullahi, A. M. et al, & Lopez-Pavon, J. (2023). The present and future status of heavy neutral leptons. J. Phys. G, 50(2), 020501–100pp.
Abstract: The existence of nonzero neutrino masses points to the likely existence of multiple Standard Model neutral fermions. When such states are heavy enough that they cannot be produced in oscillations, they are referred to as heavy neutral leptons (HNLs). In this white paper, we discuss the present experimental status of HNLs including colliders, beta decay, accelerators, as well as astrophysical and cosmological impacts. We discuss the importance of continuing to search for HNLs, and its potential impact on our understanding of key fundamental questions, and additionally we outline the future prospects for next-generation future experiments or upcoming accelerator run scenarios.
|
|
|
Abele, H. et al, Algora, A., Gonzalez-Alonso, M., & Novella, P. (2023). Particle physics at the European Spallation Source. Phys. Rep., 1023, 1–84.
Abstract: Presently under construction in Lund, Sweden, the European Spallation Source (ESS) will be the world's brightest neutron source. As such, it has the potential for a particle physics program with a unique reach and which is complementary to that available at other facilities. This paper describes proposed particle physics activities for the ESS. These encompass the exploitation of both the neutrons and neutrinos produced at the ESS for high precision (sensitivity) measurements (searches).
|
|
|
Abgrall, N. et al, Cervera-Villanueva, A., Escudero, L., Monfregola, L., & Stamoulis, P. (2011). Time projection chambers for the T2K near detectors. Nucl. Instrum. Methods Phys. Res. A, 637(1), 25–46.
Abstract: The T2K experiment is designed to study neutrino oscillation properties by directing a high intensity neutrino beam produced at J-PARC in Tokai, Japan, towards the large Super-Kamiokande detector located 295 km away, in Kamioka, Japan. The experiment includes a sophisticated near detector complex, 280 m downstream of the neutrino production target in order to measure the properties of the neutrino beam and to better understand neutrino interactions at the energy scale below a few GeV. A key element of the near detectors is the ND280 tracker, consisting of two active scintillator-bar target systems surrounded by three large time projection chambers (TPCs) for charged particle tracking. The data collected with the tracker are used to study charged current neutrino interaction rates and kinematics prior to oscillation, in order to reduce uncertainties in the oscillation measurements by the far detector. The tracker is surrounded by the former UA1/NOMAD dipole magnet and the TPCs measure the charges, momenta, and particle types of charged particles passing through them. Novel features of the TPC design include its rectangular box layout constructed from composite panels, the use of bulk micromegas detectors for gas amplification, electronics readout based on a new ASIC, and a photoelectron calibration system. This paper describes the design and construction of the TPCs, the micromegas modules, the readout electronics, the gas handling system, and shows the performance of the TPCs as deduced from measurements with particle beams, cosmic rays, and the calibration system.
|
|
|
Abraham, R. M. et al, & Garcia Soto, A. (2022). Tau neutrinos in the next decade: from GeV to EeV. J. Phys. G, 49(11), 110501–148pp.
Abstract: Tau neutrinos are the least studied particle in the standard model. This whitepaper discusses the current and expected upcoming status of tau neutrino physics with attention to the broad experimental and theoretical landscape spanning long-baseline, beam-dump, collider, and astrophysical experiments. This whitepaper was prepared as a part of the NuTau2021 Workshop.
|
|
|
Achterberg, A., Amoroso, S., Caron, S., Hendriks, L., Ruiz de Austri, R., & Weniger, C. (2015). A description of the Galactic Center excess in the Minimal Supersymmetric Standard Model. J. Cosmol. Astropart. Phys., 08(8), 006–27pp.
Abstract: Observations with the Fermi Large Area Telescope (LAT) indicate an excess in gamma rays originating from the center of our Galaxy. A possible explanation for this excess is the annihilation of Dark Matter particles. We have investigated the annihilation of neutralinos as Dark Matter candidates within the phenomenological Minimal Supersymmetric Standard Model (pMSSM). An iterative particle filter approach was used to search for solutions within the pMSSM. We found solutions that are consistent with astroparticle physics and collider experiments, and provide a fit to the energy spectrum of the excess. The neutralino is a Bino/Higgsino or Bino/Wino/Higgsino mixture with a mass in the range 84-92 GeV or 87-97 GeV annihilating into W bosons. A third solutions is found for a neutralino of mass 174-187 GeV annihilating into top quarks. The best solutions yield a Dark Matter relic density 0.06 < Omega h(2) < 0.13. These pMSSM solutions make clear forecasts for LHC, direct and indirect DM detection experiments. If the pMSSM explanation of the excess seen by Fermi-LAT is correct, a DM signal might be discovered soon.
|
|
|
Addazi, A., Valle, J. W. F., & Vaquera-Araujo, C. A. (2016). String completion of an SU(3)(c) x SU(3)(L) x U(1)(X) electroweak model. Phys. Lett. B, 759, 471–478.
Abstract: The extended electroweak SU(3)(c) circle times SU(3)(L) circle times U(1)(X) symmetry framework “explaining” the number of fermion families is revisited. While 331-based schemes can not easily be unified within the conventional field theory sense, we show how to do it within an approach based on D-branes and (un)oriented open strings, on Calabi-Yau singularities. We show how the theory can be UV-completed in a quiver setup, free of gauge and string anomalies. Lepton and baryon numbers are perturbatively conserved, so neutrinos are Dirac-type, and their lightness results from a novel TeV scale seesaw mechanism. Dynamical violation of baryon number by exotic instantons could induce neutron-antineutron oscillations, with proton decay and other dangerous R-parity violating processes strictly forbidden. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.
|
|