|
Azevedo, C. D. R., Baeza, A., Chauveau, E., Corbacho, J. A., Diaz, J., Domange, J., et al. (2023). Design, setup and routine operation of a water treatment system for the monitoring of low activities of tritium in water. Nucl. Eng. Technol., 55(7), 2349–2355.
Abstract: In the TRITIUM project, an on-site monitoring system is being developed to measure tritium (3H) levels in water near nuclear power plants. The quite low-energy betas emitted by 3H have a very short average path in water (5 mm as shown by simulations for 18 keV electrons). This path would be further reduced by impurities present in the water, resulting in a significant reduction of the detection efficiency. Therefore, one of the essential requirements of the project is the elimination of these impurities through a filtration process and the removal of salts in solution. This paper describes a water treatment system developed for the project that meets the following requirements: the water produced should be of nearpure water quality according to ISO 3696 grade 3 standard (conductivity < 10 mS/cm); the system should operate autonomously and be remotely monitored.
|
|
|
Azevedo, C. D. R., Baeza, A., Chauveau, E., Corbacho, J. A., Diaz, J., Domange, J., et al. (2020). Simulation results of a real-time in water tritium monitor. Nucl. Instrum. Methods Phys. Res. A, 982, 164555–7pp.
Abstract: In this work we present simulation results for a modular tritium in-water real-time monitor. The system allows for scalability in order to achieve the required sensitivity. The modules are composed by 340 uncladed scintillating fibers immersed in water and 2 photosensors in coincidence for light readout. Light yield and Birks' coefficient uncertainties for low energy beta particles is discussed. A study of the detection efficiency according to the fiber length is presented. Discussion on the system requirements and background mitigation for a device with sensitivity of 100 Bq/L, required to comply with the European directive 2013/51/Euratom, is presented. Due to the low energetic beta emission from tritium a detection efficiency close to 3.3% was calculated for a single 2 mm round fiber.
|
|