|
ATLAS Collaboration(Aad, G. et al), Akiot, A., Amos, K. R., Aparisi Pozo, J. A., Bailey, A. J., Bouchhar, N., et al. (2023). Fast b-tagging at the high-level trigger of the ATLAS experiment in LHC Run 3. J. Instrum., 18(11), P11006–38pp.
Abstract: The ATLAS experiment relies on real-time hadronic jet reconstruction and b-tagging to record fully hadronic events containing b-jets. These algorithms require track reconstruction, which is computationally expensive and could overwhelm the high-level-trigger farm, even at the reduced event rate that passes the ATLAS first stage hardware-based trigger. In LHC Run 3, ATLAS has mitigated these computational demands by introducing a fast neural-network-based b-tagger, which acts as a low-precision filter using input from hadronic jets and tracks. It runs after a hardware trigger and before the remaining high-level-trigger reconstruction. This design relies on the negligible cost of neural-network inference as compared to track reconstruction, and the cost reduction from limiting tracking to specific regions of the detector. In the case of Standard Model HH -> b (b) over barb (b) over bar, a key signature relying on b-jet triggers, the filter lowers the input rate to the remaining high-level trigger by a factor of five at the small cost of reducing the overall signal efficiency by roughly 2%.
|
|
ATLAS Collaboration(Aad, G. et al), Cabrera Urban, S., Castillo Gimenez, V., Costa, M. J., Fassi, F., Ferrer, A., et al. (2013). Triggers for displaced decays of long-lived neutral particles in the ATLAS detector. J. Instrum., 8, P07015–35pp.
Abstract: A set of three dedicated triggers designed to detect long-lived neutral particles decaying throughout the ATLAS detector to a pair of hadronic jets is described. The efficiencies of the triggers for selecting displaced decays as a function of the decay position are presented for simulated events. The effect of pile-up interactions on the trigger efficiencies and the dependence of the trigger rate on instantaneous luminosity during the 2012 data-taking period at the LHC are discussed.
|
|
Esteve, R., Toledo, J., Monrabal, F., Lorca, D., Serra, L., Mari, A., et al. (2012). The trigger system in the NEXT-DEMO detector. J. Instrum., 7, C12001–9pp.
Abstract: NEXT-DEMO is a prototype of NEXT (Neutrino Experiment with Xenon TPC), an experiment to search for neutrino-less double beta decay using a 100 kg radio-pure, 90 % enriched (136Xe isotope) high-pressure gaseous xenon TPC with electroluminescence readout. The detector is based on a PMT plane for energy measurements and a SiPM tracking plane for topological event filtering. The experiment will be located in the Canfranc Underground Laboratory in Spain. Front-end electronics, trigger and data-acquisition systems (DAQ) have been built. The DAQ is an implementation of the Scalable Readout System (RD51 collaboration) based on FPGA. Our approach for trigger is to have a distributed and reconfigurable system in the DAQ itself. Moreover, the trigger allows on-line triggering based on the detection of primary or secondary scintillation light, or a combination of both, that arrives to the PMT plane.
|