|
Cappuzzello, F., Rea, C., Bonaccorso, A., Bondi, M., Carbone, D., Cavallaro, M., et al. (2012). New structures in the continuum of C-15 populated by two-neutron transfer. Phys. Lett. B, 711(5), 347–352.
Abstract: The C-13(O-18,O-16)C-15 reaction has been studied at 84 MeV incident energy. The ejectiles have been detected at forward angles and C-15 excitation energy spectra have been obtained up to about 20 MeV. Several known bound and resonant states of C-15 have been identified together with two unknown structures at 10.5 MeV (FWHM = 2.5 MeV) and 13.6 MeV (FWHM = 2.5 MeV). Calculations based Oil the removal of two uncorrelated neutrons from the projectile describe a significant part of the continuum observed in the energy spectra. In particular the structure at 10.5 MeV is dominated by a resonance of C-15 near the C-13 + n + n threshold. Similar structures are found in nearby nuclei such as C-14 and Be-11.
|
|
Labiche, M. et al, Caballero, L., & Rubio, B. (2010). TIARA: A large solid angle silicon array for direct reaction studies with radioactive beams. Nucl. Instrum. Methods Phys. Res. A, 614(3), 439–448.
Abstract: A compact, quasi-4 pi position sensitive silicon array. TIARA, designed to study direct reactions induced by radioactive beams in inverse kinematics is described here. The Transfer and Inelastic All-angle Reaction Array (TIARA) consists of 8 resistive charge division detectors forming an octagonal barrel around the target and a set of double-sided silicon-strip annular detectors positioned at each end of the barrel. The detector was coupled to the gamma-ray array EXOGAM and the spectrometer VAMOS at the GANIL Laboratory to demonstrate the potential of such an apparatus with radioactive beams. The N-14(d,p)N-15 reaction, well known in direct kinematics, has been carried out in inverse kinematics for that purpose. The observation of the N-15 ground state and excited states at 7.16 and 7.86 MeV is presented here as well as the comparison of the measured proton angular distributions with DWBA calculations. Transferred l-values are in very good agreement with both theoretical calculations and previous experimental results obtained in direct kinematics.
|
|
Pajtler, M. V., Szilner, S., Corradi, L., de Angelis, G., Fioretto, E., Gadea, A., et al. (2015). Selective properties of neutron transfer reactions in the Zr-90+Pb-208 system for the population of excited states in zirconium isotopes. Nucl. Phys. A, 941, 273–292.
Abstract: Nuclei produced via multineutron transfer channels have been studied in Zr-90 + Pb-208 close to the Coulomb barrier energy in a fragment-gamma coincident measurement employing the PRISMA magnetic spectrometer coupled to the CLARA gamma-array. The selective properties of the reaction mechanism have been discussed in terms of states and their strength excited in the neutron transfer channels leading to Zr89-94 isotopes. A strong population of yrast states, with energies up to similar to 7.5 MeV has been observed.
|
|
Pajtler, M. V. et al, & Gadea, A. (2021). Excited states of Y-90,Y-92,Y-94 populated in Zr-90+Pb-208 multinucleon transfer reaction. Phys. Scr., 96(3), 035305–7pp.
Abstract: Multinucleon transfer reactions in Zr-90+Pb-208 have been studied via fragment-gamma coincidences, employing the PRISMA magnetic spectrometer coupled to the CLARA gamma-array. An analysis on Y isotopes has been carried out incorporating spectroscopic as well as reaction mechanism aspects. New gamma transitions have been observed in Y-94, confirming the findings of recent studies where nuclei were produced via fission of uranium, and a comparison with near-by Y-90,Y-92 isotopes populated in the same reaction has been discussed. Experimental cross sections have been extracted and compared with the GRAZING calculations, showing a fair agreement along the neutron pick-up side. The results confirm how multinucleon transfer reactions are a suitable mechanism for the study of neutron-rich nuclei.
|