|
Algora, A. et al, Jordan, D., Tain, J. L., Rubio, B., Agramunt, J., Perez-Cerdan, A. B., et al. (2011). Improvements on Decay Heat Summation Calculations by Means of Total Absorption Gamma-ray Spectroscopy Measurements. J. Korean Phys. Soc., 59(2), 1479–1482.
Abstract: The decay heat of fission products plays an important role in predictions of the heat released by nuclear fuel in reactors. In this contribution we present results of the analysis of the measurement of the beta decay of some refractory isotopes that were considered possible important contributors to the decay heat in reactors. The measurements presented here were performed at the IGISOL facility of the University of Jyvaskyla, Finland. In our measurements we have combined for the first time a Penning trap (JYFLTRAP), which was used as a high resolution isobaric separator, with a total absorption spectrometer. The results of the measurements as well as their consequences for decay heat summation calculations are discussed.
|
|
|
Guadilla, V. et al, Algora, A., Tain, J. L., Agramunt, J., Jordan, D., Monserrate, M., et al. (2017). Characterization of a cylindrical plastic beta-detector with Monte Carlo simulations of optical photons. Nucl. Instrum. Methods Phys. Res. A, 854, 134–138.
Abstract: In this work we report on the Monte Carlo study performed to understand and reproduce experimental measurements of a new plastic beta-detector with cylindrical geometry. Since energy deposition simulations differ from the experimental measurements for such a geometry, we show how the simulation of production and transport of optical photons does allow one to obtain the shapes of the experimental spectra. Moreover, taking into account the computational effort associated with this kind of simulation, we develop a method to convert the simulations of energy deposited into light collected, depending only on the interaction point in the detector. This method represents a useful solution when extensive simulations have to be done, as in the case of the calculation of the response function of the spectrometer in a total absorption gamma-ray spectroscopy analysis.
|
|
|
Guadilla, V. et al, Tain, J. L., Algora, A., Agramunt, J., Gelletly, W., Jordan, D., et al. (2018). Characterization and performance of the DTAS detector. Nucl. Instrum. Methods Phys. Res. A, 910, 79–89.
Abstract: DTAS is a segmented total absorption y-ray spectrometer developed for the DESPEC experiment at FAIR. It is composed of up to eighteen NaI(Tl) crystals. In this work we study the performance of this detector with laboratory sources and also under real experimental conditions. We present a procedure to reconstruct offline the sum of the energy deposited in all the crystals of the spectrometer, which is complicated by the effect of NaI(Tl) light-yield non-proportionality. The use of a system to correct for time variations of the gain in individual detector modules, based on a light pulse generator, is demonstrated. We describe also an event-based method to evaluate the summing-pileup electronic distortion in segmented spectrometers. All of this allows a careful characterization of the detector with Monte Carlo simulations that is needed to calculate the response function for the analysis of total absorption gamma-ray spectroscopy data. Special attention was paid to the interaction of neutrons with the spectrometer, since they are a source of contamination in studies of beta-delayed neutron emitting nuclei.
|
|
|
n_TOF Collaboration(Cano-Ott, D. et al), Domingo-Pardo, C., & Tain, J. L. (2011). Neutron Capture Measuremetns on Minor Actinides at the n_TOF Facility at CERN: Past, Present and Future. J. Korean Phys. Soc., 59(2), 1809–1812.
Abstract: The successful development of advanced nuclear systems for sustainable energy production and nuclear waste management depends on high quality nuclear data libraries. Recent sensitivity studies and reports [1-3] have identified the need for substantially improving the accuracy of neutron cross-section data for minor actinides. The n_TOF collaboration has initiated an ambitious experimental program for the measurement of neutron capture cross sections of minor actinides. Two experimental setups have been constructed for this purpose: a Total Absorption Calorimeter (TAC) [4] for measuring neutron capture cross-sections of low-mass and/or radioactive samples and a set of two low neutron sensitivity C(6)D(6) detectors for the less radioactive materials.
|
|
|
n_TOF Collaboration(Guerrero, C. et al), Domingo-Pardo, C., & Tain, J. L. (2011). Study of Photon Strength Function of Actinides: the Case of (235)U, (238)Np and (241)Pu. J. Korean Phys. Soc., 59(2), 1510–1513.
Abstract: The decay from excited levels in medium and heavy nuclei can be described in a statistical approach by means of Photon Strength Functions and Level Density distributions. The study of electromagnetic cascades following neutron capture based on the use of high efficiency detectors has been shown to be well suited for probing the properties of the Photon Strength Function of heavy (high level density) and/or radioactive (high background) nuclei. In this work we have investigated for the first time the validity of the recommended PSF of actinides, in particular (235)U, (238)Np and (241)Pu. Our study includes the search for resonance structures in the PSF below S(n) and draws conclusions regarding their existence and their characteristics in terms of energy, width and electromagnetic nature.
|
|
|
n_TOF Collaboration(Mendoza, E. et al), Giubrone, G., & Tain, J. L. (2011). Improved Neutron Capture Cross Section Measurements with the n_TOF Total Absorption Calorimeter. J. Korean Phys. Soc., 59(2), 1813–1816.
Abstract: The n_TOF collaboration operates a Total Absorption Calorimeter (TAC) [1] for measuring neutron capture cross-sections of low-mass and/or radioactive samples. The results obtained with the TAC have led to a substantial improvement of the capture cross sections of (237)Np and (240)Pu [2]. The experience acquired during the first measurements has allowed us to optimize the performance of the TAC and to improve the capture signal to background ratio, thus opening the way to more complex and demanding measurements on rare radioactive materials. The new design has been reached by a series of detailed Monte Carlo simulations of complete experiments and dedicated test measurements. The new capture setup will be presented and the main achievements highlighted.
|
|
|
Rubio, B., Gelletly, W., Algora, A., Nacher, E., & Tain, J. L. (2017). Beta decay studies with total absorption spectroscopy and the Lucrecia spectrometer at ISOLDE. J. Phys. G, 44(8), 084004–25pp.
Abstract: Here we present the experimental activities carried out at ISOLDE with the total absorption spectrometer Lucrecia, a large 4 pi scintillator detector designed to absorb a full gamma cascade following beta decay. This spectrometer is designed to measure beta-feeding to excited states without the systematic error called Pandemonium. The set up allows the measurement of decays of very short half life. Experimental results from several campaigns, that focus on the determination of the shapes of beta-decaying nuclei by measuring their beta decay strength distributions as a function of excitation energy in the daughter nucleus, are presented.
|
|
|
Tain, J. L., Algora, A., Agramunt, J., Guadilla, V., Jordan, M. D., Montaner-Piza, A., et al. (2015). A decay total absorption spectrometer for DESPEC at FAIR. Nucl. Instrum. Methods Phys. Res. A, 803, 36–46.
Abstract: This paper presents the design of a total absorption gamma-ray spectrometer for the determination of beta-decay intensity distributions of exotic nuclear species at the focal plane of the FAIR-NUSTAR Super Fragment Separator. The spectrometer is a key instrument in the DESPEC experiment and the proposed implementation follows extensive design studies and prototype tests. Two options were contemplated, based on Nal(TI) and LaBr3:Ce inorganic scintillation crystals respectively. Monte Carlo simulations and technical considerations determined the optimal configurations consisting of sixteen 15 x 15 x 25 cm(3) crystals for the Nal(Tl) option and one hundred and twenty-eight 5.5 x 5.5 x 11 cm(3) crystals for the LaBr3:Ce option. Minimization of dead material was crucial for maximizing the spectrometer full-energy peak efficiency. Module prototypes were build to verify constructional details and characterize their performance. The measured energy and timing resolution was found to agree rather well with estimates based on simulations of scintillation light transport and collection. The neutron sensitivity of the spectrometer, important when measuring beta-delayed neutron emitters, was investigated by means of Monte Carlo simulations.
|
|
|
Tain, J. L. et al, Algora, A., Estevez, E., Rubio, B., Valencia, E., & Jordan, D. (2011). Beta Decay Studies of Neutron Rich Nuclei Using Total Absorption Gamma-ray Spectroscopy and Delayed Neutron Measurements. J. Korean Phys. Soc., 59(2), 1499–1502.
Abstract: A complete characterisation of the beta-decay of neutron-rich nuclei can be obtained from the measurement of beta-delayed gamma rays and, whenever the process is energetically possible, beta-delayed neutrons. The accurate determination of the beta-intensity distribution and the beta-delayed neutron emission probability is of great relevance in the fields of reactor technology and nuclear astrophysics. A programme for combined measurements using the total absorption gamma-ray spectroscopy technique and both neutron counters and neutron time-of-flight spectrometers is presented.
|
|