|
ATLAS and CMS Collaborations(Aaboud, M. et al), Alvarez Piqueras, D., Barranco Navarro, L., Cabrera Urban, S., Castillo Gimenez, V., Cerda Alberich, L., et al. (2018). Combination of inclusive and differential t(t)over-bar charge asymmetry measurements using ATLAS and CMS data at root S =7 and 8 TeV. J. High Energy Phys., 04(4), 033–68pp.
Abstract: This paper presents combinations of inclusive and differential measurements of the charge asymmetry (A(C)) in top quark pair (t(t)over-bar) events with a lepton+jets signature by the ATLAS and CMS Collaborations, using data from LHC proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. The data correspond to integrated luminosities of about 5 and 20 fb(-1) for each experiment, respectively. The resulting combined LHC measurements of the inclusive charge asymmetry are A(C)(LHC7) = 0.005 +/- 0.007 (stat) +/- 0.006 (syst) at 7 TeV and A(C)(LHC8) = 0.0055 +/- 0.0023 (stat) +/- 0.0025 (syst) at 8 TeV. These values, as well as the combination of A(C )measurements as a function of the invariant mass of the t(t)over-bar system at 8 TeV, are consistent with the respective standard model predictions.
|
|
|
ATLAS and CMS Collaborations(Aad, G. et al), Aparisi Pozo, J. A., Bailey, A. J., Cabrera Urban, S., Cardillo, F., Castillo Gimenez, V., et al. (2023). Combination of inclusive top-quark pair production cross-section measurements using ATLAS and CMS data at √s=7 and 8 TeV. J. High Energy Phys., 07(7), 213–64pp.
Abstract: A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton-proton collisions at centre-of-mass energies of 7 and 8TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron-muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb(-1) at root s = 7 TeV and about 20 fb(-1) at root s = 8TeV for each experiment. The combined cross-sections are determined to be 178.5 +/- 4.7 pb at root s = 7 TeV and 243.3(-5.9)(+6.0) pb at root s = 8TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined crosssections is determined to be R-8/7 = 1.363 +/- 0.032. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are m(t)(pole) = 173.4(-2.0)(+1.8) GeV and alpha s(m(Z)) = 0.1170(-0.0018)(+0.0021).
|
|
|
ATLAS and CMS Collaborations(Aad, G. et al), Aparisi Pozo, J. A., Bailey, A. J., Cabrera Urban, S., Castillo, F. L., Castillo Gimenez, V., et al. (2020). Combination of the W boson polarization measurements in top quark decays using ATLAS and CMS data at root s=8 TeV. J. High Energy Phys., 08(8), 051–67pp.
Abstract: The combination of measurements of the W boson polarization in top quark decays performed by the ATLAS and CMS collaborations is presented. The measurements are based on proton-proton collision data produced at the LHC at a centre-of-mass energy of 8 TeV, and corresponding to an integrated luminosity of about 20 fb(-1)for each experiment. The measurements used events containing one lepton and having different jet multiplicities in the final state. The results are quoted as fractions of W bosons with longitudinal (F-0), left-handed (F-L), or right-handed (F-R) polarizations. The resulting combined measurements of the polarization fractions are F-0= 0.693 +/- 0.014 and F-L= 0.315 +/- 0.011. The fractionF(R)is calculated from the unitarity constraint to be F-R=-0.008 +/- 0.007. These results are in agreement with the standard model predictions at next-to-next-to-leading order in perturbative quantum chromodynamics and represent an improvement in precision of 25 (29)% for F-0(F-L) with respect to the most precise single measurement. A limit on anomalous right-handed vector (V-R), and left- and right-handed tensor (g(L), g(R)) tWb couplings is set while fixing all others to their standard model values. The allowed regions are [-0.11,0.16] for V-R, [-0.08,0.05] for g(L), and [-0.04,0.02] for g(R), at 95% confidence level. Limits on the corresponding Wilson coefficients are also derived.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2019). Measurement of the top-quark mass in tt 1-jet events collected with the ATLAS detector in pp collisions at=8 TeV. J. High Energy Phys., 11(11), 150–40pp.
Abstract: A determination of the top-quark mass is presented using 20.2 fb-1 of 8 TeV proton-proton collision data produced by the Large Hadron Collider and collected by the ATLAS experiment. The normalised differential cross section of top-quark pair production in association with an energetic jet is measured in the lepton+jets final state and unfolded to parton and particle levels. The unfolded distribution at parton level can be described using next-to-leading-order QCD predictions in terms of either the top-quark pole mass or the running mass as defined in the (modified) minimal subtraction scheme. A comparison between the experimental distribution and the theoretical prediction allows the top-quark mass to be extracted in the two schemes. The value obtained for the pole-mass scheme is: rnirle 171.1 0.4 (stat) 0.9 (syst) 173 (theo) GeV. The extracted value in the running-mass scheme is: rnt(rnt) = 162.9 0.5 (stat) 1.0 (syst) 1:12 (theo) GeV. The results for the top -quark mass using the two schemes are consistent, when translated from one scheme to the other.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2019). Search for top-quark decays t -> Hq with 36 fb(-1) of pp collision data at root s=13 TeV with the ATLAS detector. J. High Energy Phys., 05(5), 123–67pp.
Abstract: A search for flavour-changing neutral current decays of a top quark into an up-type quark (q = u, c) and the Standard Model Higgs boson, t Hq, is presented. The search is based on a dataset of pp collisions at = 13 TeV recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider and corresponding to an integrated luminosity of 36.1 fb(-1). Two complementary analyses are performed to search for top-quark pair events in which one top quark decays into Wb and the other top quark decays into Hq, and target the Hbb and H (+-) decay modes, respectively. The high multiplicity of b-quark jets, or the presence of hadronically decaying -leptons, is exploited in the two analyses respectively. Multivariate techniques are used to separate the signal from the background, which is dominated by top-quark pair production. No significant excess of events above the background expectation is found, and 95% CL upper limits on the t Hq branching ratios are derived. The combination of these searches with ATLAS searches in diphoton and multilepton final states yields observed (expected) 95% CL upper limits on the t Hc and t Hu branching ratios of 1.1 x 10(-3) (8.3 x 10(-4)) and 1.2 x 10(-3) (8.3 x 10(-4)), respectively. The corresponding combined observed (expected) upper limits on the |(tcH)| and |(tuH)| couplings are 0.064 (0.055) and 0.066 (0.055), respectively.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Barranco Navarro, L., Cabrera Urban, S., Castillo Gimenez, V., Cerda Alberich, L., et al. (2017). Analysis of the Wtb vertex from the measurement of triple-differential angular decay rates of single top quarks produced in the t-channel at root s=8 TeV with the ATLAS detector. J. High Energy Phys., 12(12), 017–60pp.
Abstract: The electroweak production and subsequent decay of single top quarks in the t-channel is determined by the properties of the Wtb vertex, which can be described by the complex parameters of an effective Lagrangian. An analysis of a triple-differential decay rate in t-channel production is used to simultaneously determine five generalised helicity fractions and phases, as well as the polarisation of the produced top quark. The complex parameters are then constrained. This analysis is based on 20.2 fb(-1) of proton-proton collision data at a centre-of-mass energy of 8 TeV collected with the ATLAS detector at the LHC. The fraction of decays containing transversely polarised W bosons is measured to be f(1) = 0.30 +/- 0.05. The phase between amplitudes for transversely and longitudinally polarised W bosons recoiling against left-handed b-quarks is measured to be delta = 0.002 pi(+0.016 pi)(+0.017 pi), giving no indication of CP violation. The fractions of longitudinal or transverse W bosons accompanied by right-handed b-quarks are also constrained. Based on these measurements, limits are placed at 95% CL on the ratio of the complex coupling parameters Re [g(R)/V-L is an element of [-0.12, 0.17] and Im [g(R)/V-L is an element of [-0.07, 0.06]. Constraints are also placed on the ratios vertical bar V-R/V-L vertical bar and vertical bar g(L)/V-L vertical bar. In addition, the polarisation of single top quarks in the t-channel is constrained to be P > 0.72 (95% CL). None of the above measurements make assumptions about the value of any of the other parameters or couplings and all of them are in agreement with the Standard Model.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Barranco Navarro, L., Cabrera Urban, S., Castillo Gimenez, V., Cerda Alberich, L., et al. (2017). Measurement of the t(t)over-bar gamma production cross section in proton-proton collisions at root s=8 TeV with the ATLAS detector. J. High Energy Phys., 11(11), 086–43pp.
Abstract: The cross section of a top-quark pair produced in association with a photon is measured in proton-proton collisions at a centre-of-mass energy of root s = 8 TeV with 20.2 fb(-1) of data collected by the ATLAS detector at the Large Hadron Collider in 2012. The measurement is performed by selecting events that contain a photon with transverse momentum p(T) > 15 GeV, an isolated lepton with large transverse momentum, large missing transverse momentum, and at least four jets, where at least one is identified as originating from a b-quark. The production cross section is measured in a fiducial region close to the selection requirements. It is found to be 139 +/- 7 (stat.) +/- 17 (syst.) fb, in good agreement with the theoretical prediction at next-to-leading order of 151 +/- 24 fb. In addition, differential cross sections in the fiducial region are measured as a function of the transverse momentum and pseudorapidity of the photon.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Barranco Navarro, L., Cabrera Urban, S., Castillo Gimenez, V., Cerda Alberich, L., et al. (2017). Search for top quark decays t -> qH,with H -> gamma gamma, in root s=13 TeV pp collisions using the ATLAS detector. J. High Energy Phys., 10(10), 129–43pp.
Abstract: This article presents a search for flavour-changing neutral currents in the decay of a top quark into an up-type (q = c; u) quark and a Higgs boson, where the Higgs boson decays into two photons. The proton-proton collision data set analysed amounts to 36.1 fb(-1) at root s = 13TeV collected by the ATLAS experiment at the LHC. Top quark pair events are searched for, where one top quark decays into qH and the other decays into bW. Both the hadronic and leptonic decay modes of the W boson are used. No significant excess is observed and an upper limit is set on the t -> cH branching ratio of 2 : 2 x 10(-3) at the 95% confidence level, while the expected limit in the absence of signal is 1 : 6 x 10(-3). The corresponding limit on the tcH coupling is 0.090 at the 95% confidence level. The observed upper limit on the t -> uH branching ratio is 2 : 4 x 10(-3).
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Barranco Navarro, L., Cabrera Urban, S., Castillo Gimenez, V., Cerda Alberich, L., et al. (2018). Measurements of differential cross sections of top quark pair production in association with jets in pp collisions at root s=13 TeV using the ATLAS detector. J. High Energy Phys., 10(10), 159–58pp.
Abstract: Measurements of di ff erential cross sections of top quark pair production in association with jets by the ATLAS experiment at the LHC are presented. The measurements are performed as functions of the top quark transverse momentum, the transverse momentum of the top quark-antitop quark system and the out-of-plane transverse momentum using data from pp collisions at p s = 13TeV collected by the ATLAS detector at the LHC in 2015 and corresponding to an integrated luminosity of 3.2 fb. The top quark pair events are selected in the lepton (electron or muon) + jets channel. The measured cross sections, which are compared to several predictions, allow a detailed study of top quark production.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Barranco Navarro, L., Cabrera Urban, S., Castillo Gimenez, V., Cerda Alberich, L., et al. (2017). Top-quark mass measurement in the all-hadronic t(t)over-bar decay channel at root s=8 TeV with the ATLAS detector. J. High Energy Phys., 09(9), 118–41pp.
Abstract: The top-quark mass is measured in the all-hadronic top-antitop quark decay channel using proton-proton collisions at a centre-of-mass energy of root s = 8 TeV with the ATLAS detector at the CERN Large Hadron Collider. The data set used in the analysis corresponds to an integrated luminosity of 20.2 fb(-1). The large multi-jet background is modelled using a data-driven method. The top-quark mass is obtained from template fits to the ratio of the three-jet to the dijet mass. The three-jet mass is obtained from the three jets assigned to the top quark decay. From these three jets the dijet mass is obtained using the two jets assigned to the W boson decay. The top-quark mass is measured to be 173.72 +/- 0.55 (stat.) +/- 1.01 (syst.) GeV.
|
|