|
Balibrea-Correa, J., Lerendegui-Marco, J., Calvo, D., Caballero, L., Babiano, V., Ladarescu, I., et al. (2021). A first prototype of C6D6 total-energy detector with SiPM readout for neutron capture time-of-flight experiments. Nucl. Instrum. Methods Phys. Res. A, 985, 164709–8pp.
Abstract: Low efficiency total-energy detectors (TEDs) are one of the main tools for neutron capture cross section measurements utilizing the time-of-flight (TOF) technique. State-of-the-art TEDs are based on a C6D6 liquid-scintillation cell optically coupled to a fast photomultiplier tube. The large photomultiplier tube represents yet a significant contribution to the so-called neutron sensitivity background, which is one of the most conspicuous sources of uncertainty in this type of experiments. Here we report on the development of a first prototype of a TED based on a silicon-photomultiplier (SiPM) readout, thus resulting in a lightweight and much more compact detector. Apart from the envisaged improvement in neutron sensitivity, the new system uses low voltage (+28 V) and low current supply (-50 mA), which is more practical than the-kV supply required by conventional photomultipliers. One important difficulty hindering the earlier implementation of SiPM readout for this type of detector was the large capacitance for the output signal when all pixels of a SiPM array are summed together. The latter leads to long pulse rise and decay times, which are not suitable for time-of-flight experiments. In this work we demonstrate the feasibility of a Schottky-diode multiplexing readout approach, that allows one to preserve the excellent timing properties of SiPMs, hereby paving the way for their implementation in future neutron TOF experiments.
|
|
Domingo-Pardo, C. (2016). i-TED: A novel concept for high-sensitivity (n,gamma) cross-section measurements. Nucl. Instrum. Methods Phys. Res. A, 825, 78–86.
Abstract: A new method for measuring (n, gamma) cross-sections aiming at enhanced signal-to-background ratio is presented. This new approach is based on the combination of the pulse-height weighting technique with a total energy detection system that features gamma-ray imaging capability (i-TED). The latter allows one to exploit Compton imaging techniques to discriminate between true capture gamma-rays arising from the sample under study and background gamma-rays coming from contaminant neutron (prompt or delayed) captures in the surrounding environment. A general proof-of-concept detection system for this application is presented in this paper together with a description of the imaging method and a conceptual demonstration based on Monte Carlo simulations.
|
|
Garcia, A. R., Martinez, T., Cano-Ott, D., Castilla, J., Guerrero, C., Marin, J., et al. (2012). MONSTER: a time of flight spectrometer for beta-delayed neutron emission measurements. J. Instrum., 7, C05012–12pp.
Abstract: The knowledge of the beta-decay properties of nuclei contributes decisively to our understanding of nuclear phenomena: the beta-delayed neutron emission of neutron rich nuclei plays an important role in the nucleosynthesis r-process and constitutes a probe for nuclear structure of very neutron rich nuclei providing information about the high energy part of the full beta strength (S-beta) function. In addition, beta-delayed neutrons are essential for the control and safety of nuclear reactors. In order to determine the neutron energy spectra and emission probabilities from neutron precursors a MOdular Neutron time-of-flight SpectromeTER (MONSTER) has been proposed for the DESPEC experiment at the future FAIR facility. The design of MONSTER and status of its construction are reported in this work.
|
|
Gomez-Cadenas, J. J., Benlloch-Rodriguez, J. M., Ferrario, P., Monrabal, F., Rodriguez, J., & Toledo, J. F. (2016). Investigation of the coincidence resolving time performance of a PET scanner based on liquid xenon: a Monte Carlo study. J. Instrum., 11, P09011–18pp.
Abstract: The measurement of the time of flight of the two 511 keV gammas recorded in coincidence in a PET scanner provides an effective way of reducing the random background and therefore increases the scanner sensitivity, provided that the coincidence resolving time (CRT) of the gammas is sufficiently good. The best commercial PET-TOF system today (based in LYSO crystals and digital SiPMs), is the VEREOS of Philips, boasting a CRT of 316 ps (FWHM). In this paper we present a Monte Carlo investigation of the CRT performance of a PET scanner exploiting the scintillating properties of liquid xenon. We find that an excellent CRT of 70 ps (depending on the PDE of the sensor) can be obtained if the scanner is instrumented with silicon photomultipliers (SiPMs) sensitive to the ultraviolet light emitted by xenon. Alternatively, a CRT of 160 ps can be obtained instrumenting the scanner with (much cheaper) blue-sensitive SiPMs coated with a suitable wavelength shifter. These results show the excellent time of flight capabilities of a PET device based in liquid xenon.
|
|
Guerrero, C., Cano-Ott, D., Mendoza, E., Tain, J. L., Algora, A., Berthoumieux, E., et al. (2012). Monte Carlo simulation of the n_TOF Total Absorption Calorimeter. Nucl. Instrum. Methods Phys. Res. A, 671, 108–117.
Abstract: The n_TOF Total Absorption Calorimeter (TAC) is a 4 pi BaF2 segmented detector used at CERN for measuring neutron capture cross-sections of importance for the design of advanced nuclear reactors. This work presents the simulation code that has been developed in GEANT4 for the accurate determination of the detection efficiency of the TAC for neutron capture events. The code allows to calculate the efficiency of the TAC for every neutron capture state, as a function of energy, crystal multiplicity, and counting rate. The code includes all instrumental effects such as the single crystal detection threshold and energy resolution, finite size of the coincidence time window, and signal pile-up. The results from the simulation have been validated with experimental data for a large set of electromagnetic de-excitation patterns: beta-decay of well known calibration sources, neutron capture reactions in light nuclei with well known level schemes like Ti-nat, reference samples used in (n,gamma) measurements like Au-197 and experimental data from an actinide sample like Pu-240. The systematic uncertainty in the determination of the detection efficiency has been estimated for all the cases. As a representative example, the accuracy reached for the case of Au-197(n,gamma) ranges between 0.5% and 2%, depending on the experimental and analysis conditions. Such a value matches the high accuracy required for the nuclear cross-section data needed in advanced reactor design.
|
|
Kulikov, I., Algora, A., Atanasov, D., Ascher, P., Blaum, K., Cakirli, R. B., et al. (2020). Masses of short-lived Sc-49, Sc-50, As-70, Br-73 and stable Hg-196 nuclides. Nucl. Phys. A, 1002, 121990–15pp.
Abstract: Mass measurements of Sc-49,Sc-50, As-70, Br-73 and Hg-196 nuclides produced at CERN's radioactive-ion beam facility ISOLDE are presented. The measurements were performed at the ISOLTRAP mass spectrometer by use of the multi-reflection time-of-flight and the Penning-trap mass spectrometry techniques. The new results agree well with previously known literature values. The mass accuracy for all cases has been improved.
|
|
Lerendegui-Marco, J., Babiano-Suarez, V., Domingo-Pardo, C., Ladarescu, I., Tarifeno-Saldivia, A., & de la Fuente-Rosales, G. (2024). Pushing the high count rate limits of scintillation detectors for challenging neutron-capture experiments. Nucl. Instrum. Methods Phys. Res. A, 1064, 169385–13pp.
Abstract: One of the critical aspects for the accurate determination of neutron capture cross sections when combining time-of-flight and total energy detector techniques is the characterization and control of systematic uncertainties associated to the measuring devices. In this work we explore the most conspicuous effects associated to harsh count rate conditions: dead-time and pile-up effects. Both effects, when not properly treated, can lead to large systematic uncertainties and bias in the determination of neutron cross sections. In the majority of neutron capture measurements carried out at the CERN nTOF facility, the detectors of choice are the C6D6 liquid-based either in form of large-volume cells or recently commissioned sTED detector array, consisting of much smaller-volume modules. To account for the aforementioned effects, we introduce a Monte Carlo model for these detectors mimicking harsh count rate conditions similar to those happening at the CERN nTOF 20 m flight path vertical measuring station. The model parameters are extracted by comparison with the experimental data taken at the same facility during 2022 experimental campaign. We propose a novel methodology to consider both, dead-time and pile-up effects simultaneously for these fast detectors and check the applicability to experimental data from Au-197(n, gamma), including the saturated 4.9 eV resonance which is an important component of normalization for neutron cross section measurements.
|
|
Luo, X. L. et al, Agramunt, J., Egea, F. J., Gadea, A., & Huyuk, T. (2014). Test of digital neutron-gamma discrimination with four different photomultiplier tubes for the NEutron Detector Array (NEDA). Nucl. Instrum. Methods Phys. Res. A, 767, 83–91.
Abstract: A comparative study of the neutron-gamma discrimination performance of a liquid scintillator detector BC501A coupled to four different 5 in photomultiplier tubes (ET9390kb, R11833-100, XP4512 and R4144) was carried out Both the Charge Comparison method and the Integrated Rise-Time method were implemented digitally to discriminate between neutrons and gamma rays emitted by a Cf-252 source. In both methods, the neutron-gamma discrimination capabilities of the four photomultiplier tubes were quantitatively compared by evaluating their figure-of-merit values at different energy regions between 50 keVee and 1000 keVee. Additionally, the results were further verified qualitatively using time-of-flight to distinguish gamma rays and neutrons. The results consistently show that photomultiplier tubes R11833-100 and ET9390kb generally perform best regarding neutron-gamma discrimination with only slight differences in figure-of-merit values. This superiority can be explained by their relatively higher photoelectron yield, which indicates that a scintillator detector coupled to a photomultiplier tube with higher photoelectron yield tends to result in better neutron-gamma discrimination performance. The results of this work will provide reference for the choice of photomultiplier tubes for future neutron detector arrays like NEDA.
|
|
Magan, D. L. P., Caballero, L., Domingo-Pardo, C., Agramunt-Ros, J., Albiol, F., Casanovas, A., et al. (2016). First tests of the applicability of gamma-ray imaging for background discrimination in time-of-flight neutron capture measurements. Nucl. Instrum. Methods Phys. Res. A, 823, 107–119.
Abstract: In this work we explore for the first time the applicability of using gamma-ray imaging in neutron capture measurements to identify and suppress spatially localized background. For this aim, a pinhole gamma camera is assembled, tested and characterized in terms of energy and spatial performance. It consists of a monolithic CeBr3 scintillating crystal coupled to a position-sensitive photomultiplier and readout through an integrated circuit AMIC2GR. The pinhole collimator is a massive carven block of lead. A series of dedicated measurements with calibrated sources and with a neutron beam incident on a Au-197 sample have been carried out at n_TOF, achieving an enhancement of a factor of two in the signal-to-background ratio when selecting only those events coming from the direction of the sample.
|
|
n_TOF Collaboration(Bacak, M. et al), Domingo-Pardo, C., & Tain, J. L. (2020). A compact fission detector for fission-tagging neutron capture experiments with radioactive fissile isotopes. Nucl. Instrum. Methods Phys. Res. A, 969, 163981–10pp.
Abstract: In the measurement of neutron capture cross-sections of fissile isotopes, the fission channel is a source of background which can be removed efficiently using the so-called fission-tagging or fission-veto technique. For this purpose a new compact and fast fission chamber has been developed. The design criteria and technical description of the chamber are given within the context of a measurement of the U-233(n, gamma) cross-section at the nTOF facility at CERN, where it was coupled to the nTOF Total Absorption Calorimeter. For this measurement the fission detector was optimized for time resolution, minimization of material in the neutron beam and for alpha-fission discrimination. The performance of the fission chamber and its application as a fission tagging detector are discussed.
|