|
Ruhr, F. et al, Escobar, C., & Miñano, M. (2020). Testbeam studies of barrel and end-cap modules for the ATLAS ITk strip detector before and after irradiation. Nucl. Instrum. Methods Phys. Res. A, 979, 164430–6pp.
Abstract: In order to cope with the occupancy and radiation doses expected at the High-Luminosity LHC, the ATLAS experiment will replace its Inner Detector with an all-silicon Inner Tracker (ITk), consisting of pixel and strip subsystems. In the last two years, several prototype ITk strip modules have been tested using beams of high energy electrons produced at the DESY-II testbeam facility. Tracking was provided by EUDET telescopes. The modules tested are built from two sensor types: the rectangular ATLAS17LS, which will be used in the outer layers of the central barrel region of the detector, and the annular ATLAS12EC, which will be used in the innermost ring (R0) of the forward region. Additionally, a structure with two RO modules positioned back-to-back has been measured, demonstrating space point reconstruction using the stereo angle of the strips. Finally, one barrel and one RO module have been measured after irradiation to 40% beyond the expected end-of-lifetime fluence. The data obtained allow for thorough tests of the module performance, including charge collection, noise occupancy, detection efficiency, and tracking performance. The results give confidence that the ITk strip detector will meet the requirements of the ATLAS experiment.
|
|
Vilella, E., Alonso, O., Trenado, J., Vila, A., Casanova, R., Vos, M., et al. (2012). A test beam setup for the characterization of the Geiger-mode avalanche photodiode technology for particle tracking. Nucl. Instrum. Methods Phys. Res. A, 694, 199–204.
Abstract: It is well known that avalanche photodiodes operated in the Geiger mode above the breakdown voltage offer a virtually infinite gain and time accuracy in the picosecond range that can be used for single photon detection. However, their performance in particle detection still remains unexplored. In this contribution, we are going to expose different steps that we have taken in order to prove the efficiency of the Geiger mode avalanche photodiodes in the aforementioned field. In particular, we will present a setup for the characterization of these sensors in a test beam. The expected results of the test beam at DESY and CERN have been simulated with Geant4 and will also be exposed.
|