|
ATLAS Collaboration(Abat, E. et al), Castillo Gimenez, V., Ferrer, A., Gonzalez, V., Higon-Rodriguez, E., Mitsou, V. A., et al. (2010). Study of energy response and resolution of the ATLAS barrel calorimeter to hadrons of energies from 20 to 350 GeV. Nucl. Instrum. Methods Phys. Res. A, 621(1-3), 134–150.
Abstract: A fully instrumented slice of the ATLAS detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the results of the measurements of the response of the barrel calorimeter to hadrons with energies in the range 20-350 GeV and beam impact points and angles corresponding to pseudo-rapidity values in the range 0.2-0.65 are reported. The results are compared to the predictions of a simulation program using the Geant 4 toolkit.
|
|
|
ATLAS Collaboration(Adragna, P. et al), Castelo, J., Castillo Gimenez, V., Cuenca, C., Ferrer, A., Fullana, E., et al. (2010). Measurement of pion and proton response and longitudinal shower profiles up to 20 nuclear interaction lengths with the ATLAS Tile calorimeter. Nucl. Instrum. Methods Phys. Res. A, 615(2), 158–181.
Abstract: The response of pions and protons in the energy range of 20-180 GeV, produced at CERN's SPS H8 test-beam line in the ATLAS iron-scintillator Tile hadron calorimeter, has been measured. The test-beam configuration allowed the measurement of the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It was found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion-to-proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion-induced showers. The data are compared with GEANT4 simulations using several hadronic physics lists. The measured longitudinal shower profiles are described by an analytical shower parametrization within an accuracy of 5-10%. The amount of energy leaking out behind the calorimeter is determined and parametrized as a function of the beam energy and the calorimeter depth. This allows for a leakage correction of test-beam results in the standard projective geometry.
|
|
|
Ros Garcia, A., Barrio, J., Etxebeste, A., Garcia-Lopez, J., Jimenez-Ramos, M. C., Lacasta, C., et al. (2020). MACACO II test-beam with high energy photons. Phys. Med. Biol., 65(24), 245027–12pp.
Abstract: The IRIS group at IFIC Valencia is developing a three-layer Compton camera for treatment monitoring in proton therapy. The system is composed of three detector planes, each made of a LaBr3<i monolithic crystal coupled to a SiPM array. Having obtained successful results with the first prototype (MACACO) that demonstrated the feasibility of the proposed technology, a second prototype (MACACO II) with improved performance has been developed, and is the subject of this work. The new system has an enhanced detector energy resolution which translates into a higher spatial resolution of the telescope. The image reconstruction method has also been improved with an accurate model of the sensitivity matrix. The device has been tested with high energy photons at the National Accelerator Centre (CNA, Seville). The tests involved a proton beam of 18 MeV impinging on a graphite target, to produce 4.4 MeV photons. Data were taken at different system positions of the telescope with the first detector at 65 and 160 mm from the target, and at different beam intensities. The measurements allowed successful reconstruction of the photon emission distribution at two target positions separated by 5 mm in different telescope configurations. This result was obtained both with data recorded in the first and second telescope planes (two interaction events) and, for the first time in beam experiments, with data recorded in the three planes (three interaction events).
|
|