|
T2K Collaboration(Abe, K. et al), Antonova, M., Cervera-Villanueva, A., Fernandez, P., Izmaylov, A., & Novella, P. (2019). Search for neutral-current induced single photon production at the ND280 near detector in T2K. J. Phys. G, 46(8), 08LT01–16pp.
Abstract: Neutrino neutral-current (NC) induced single photon production is a sub-leading order process for accelerator-based neutrino beam experiments including T2K. It is, however, an important process to understand because it is a background for electron (anti)neutrino appearance oscillation experiments. Here, we performed the first search of this process below 1 GeV using the fine-grained detector at the T2K ND280 off-axis near detector. By reconstructing single photon kinematics from electron-positron pairs, we achieved 95% pure gamma ray sample from 5.738 x 10(20) protons-on-targets neutrino mode data. We do not find positive evidence of NC induced single photon production in this sample. We set the model-dependent upper limit on the cross-section for this process, at 0.114 x 10(-38) cm(2) (90% C.L.) per nucleon, using the J-PARC off-axis neutrino beam with an average energy of < E-v > similar to 0.6 GeV. This is the first limit on this process below 1 GeV which is important for current and future oscillation experiments looking for electron neutrino appearance oscillation signals.
|
|
|
T2K Collaboration(Abe, K. et al), Cervera-Villanueva, A., Escudero, L., Gomez-Cadenas, J. J., Hansen, C., Monfregola, L., et al. (2011). The T2K experiment. Nucl. Instrum. Methods Phys. Res. A, 659(1), 106–135.
Abstract: The T2K experiment is a long baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle theta(13) by observing nu(e) appearance in a nu(mu) beam. It also aims to make a precision measurement of the known oscillation parameters, Delta m(23)(2) and sin(2)2 theta(23), via nu(mu) disappearance studies. Other goals of the experiment include various neutrino cross-section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem.
|
|
|
T2K Collaboration(Abe, K. et al), Cervera-Villanueva, A., Escudero, L., Gomez-Cadenas, J. J., Hansen, C., Monfregola, L., et al. (2012). Measurements of the T2K neutrino beam properties using the INGRID on-axis near detector. Nucl. Instrum. Methods Phys. Res. A, 694, 211–223.
Abstract: Precise measurement of neutrino beam direction and intensity was achieved based on a new concept with modularized neutrino detectors. INGRID (Interactive Neutrino GRID) is an on-axis near detector for the T2K long baseline neutrino oscillation experiment. INGRID consists of 16 identical modules arranged in horizontal and vertical arrays around the beam center. The module has a sandwich structure of iron target plates and scintillator trackers. INGRID directly monitors the muon neutrino beam profile center and intensity using the number of observed neutrino events in each module. The neutrino beam direction is measured with accuracy better than 0.4 mrad from the measured profile center. The normalized event rate is measured with 4% precision. (C) 2012 Elsevier B.V. All rights reserved.
|
|