|
Galli, P., Goldstein, K., Katmadas, S., & Perz, J. (2011). First-order flows and stabilisation equations for non-BPS extremal black holes. J. High Energy Phys., 06(6), 070–28pp.
Abstract: We derive a generalised form of flow equations for extremal static and rotating non-BPS black holes in four-dimensional ungauged N = 2 supergravity coupled to vector multiplets. For particular charge vectors, we give stabilisation equations for the scalars, analogous to the BPS case, describing full known solutions. Based on this, we propose a generic ansatz for the stabilisation equations, which surprisingly includes ratios of harmonic functions.
|
|
|
Galli, P., Goldstein, K., & Perz, J. (2013). On anharmonic stabilisation equations for black holes. J. High Energy Phys., 03(3), 036–7pp.
Abstract: We investigate the stabilisation equations for sufficiently general, yet regular, extremal (supersymmetric and non-supersymmetric) and non-extremal black holes in four-dimensional N = 2 supergravity using both the H-FGK approach and a generalisation of Denef's formalism. By an explicit calculation we demonstrate that the equations necessarily contain an anharmonic part, even in the static, spherically symmetric and asymptotically flat case.
|
|
|
Galli, P., Meessen, P., & Ortin, T. (2013). The Freudenthal gauge symmetry of the black holes of N=2, d=4 supergravity. J. High Energy Phys., 05(5), 011–15pp.
Abstract: We show that the representation of black-hole solutions in terms of the variables H-M which are harmonic functions in the supersymmetric case is non-unique due to the existence of a local symmetry in the effective action. This symmetry is a continuous (and local) generalization of the discrete Freudenthal transformations initially introduced for the black-hole charges and can be used to rewrite the physical fields of a solution in terms of entirely different-looking functions.
|
|
|
Lazaries, G., & Pallis, C. (2015). Shift symmetry and Higgs inflation in supergravity with observable gravitational waves. J. High Energy Phys., 11(11), 114–28pp.
Abstract: We demonstrate how to realize within supergravity a novel chaotic-type inflationary scenario driven by the radial parts of a conjugate pair of Higgs superfields causing the spontaneous breaking of a grand unified gauge symmetry at a scale assuming the value of the supersymmetric grand unification scale. The superpotential is uniquely determined at the renormalizable level by the gauge symmetry and a continuous R symmetry. We select two types of Kahler potentials, which respect these symmetries as well as an approximate shift symmetry. In particular, they include in a logarithm a dominant shift-symmetric term proportional to a parameter c together with a small term violating this symmetry and characterized by a parameter c(+). In both cases, imposing a lower bound on c, inflation can be attained with subplanckian values of the original inflaton, while the corresponding effective theory respects perturbative unitarity for r +/- = c(+)/c_ <= 1. These inflationary models do not lead to overproduction of cosmic defects, are largely independent of the one-loop radiative corrections and accommodate, for natural values of r +/-, observable gravitational waves consistently with all the current observational data. The inflaton mass is mostly confined in the range (3.7 – 8.1) x 10(10) GeV.
|
|