|
n_TOF Collaboration(Barbagallo, M. et al), Domingo-Pardo, C., & Tain, J. L. (2018). Experimental setup and procedure for the measurement of the Be-7(n,p)Li-7 reaction at n_TOF. Nucl. Instrum. Methods Phys. Res. A, 887, 27–33.
Abstract: Following the completion of the second neutron beam line and the related experimental area (EAR2) at the n_TOF spallation neutron source at CERN, several experiments were planned and performed. The high instantaneous neutron flux available in EAR2 allows to investigate neutron induced reactions with charged particles in the exit channel even employing targets made out of small amounts of short-lived radioactive isotopes. After the successful measurement of the Be-7(n,alpha)alpha cross section, the Be-7(n,p)Li-7 reaction was studied in order to provide still missing cross section data of relevance for Big Bang Nucleosynthesis (BBN), in an attempt to find a solution to the cosmological Lithium abundance problem. This paper describes the experimental setup employed in such a measurement and its characterization.
|
|
|
n_TOF Collaboration(Chiaveri, E. et al), Giubrone, G., & Tain, J. L. (2011). Past, Present and Future of the n_TOF Facility at CERN. J. Korean Phys. Soc., 59(2), 1620–1623.
Abstract: The nTOF spallation neutron facility is operating at CERN since 2001. Neutrons are produced with a very wide energy range, from thermal up to 1 GeV and with a very high instantaneous flux (10(5)n/cm(2)/pulse at 200 m from target) thanks to the high intensity (7 x 10(12) protons/pulse) and low repetition rate of the Proton Synchrotron (PS) which is delivering protons to a lead spallation target. The experimental area is located at 200 m from the target, resulting in a very good energy resolution and beam quality thanks to the adoption of an optimal collimation system. At the end of 2008 the nTOF facility has resumed operation after a halt of 3 years due to technical issues. This contribution will outline the main physics results obtained by the facility since its inception in 1999, and show the importance of the measured nuclear data in the field of Nuclear Astrophysics and Nuclear Technology. Then it will present the future perspectives of the facility, aiming mainly in the direction of measuring highly radioactive samples, for which the facility has unique capabilities, with a lower background.
|
|
|
n_TOF Collaboration(Cosentino, L. et al), Domingo-Pardo, C., Tain, J. L., & Tarifeño-Saldivia, A. (2016). Experimental setup and procedure for the measurement of the Be-7(n,alpha)alpha reaction at n_TOF. Nucl. Instrum. Methods Phys. Res. A, 830, 197–205.
Abstract: The newly built second experimental area EAR2 of then n_ToF spallation neutron source at CERN allows to perform (n, charged particles) experiments on short-lived highly radioactive targets. This paper describes a detection apparatus and the experimental procedure for the determination of the cross-section of the Be-7(n,alpha)alpha reaction, which represents one of the focal points toward the solution of the cosmological Lithium abundance problem, and whose only measurement, at thermal energy, dates back to 1963. The apparently unsurmountable experimental difficulties stemming from the huge Be-7 gamma-activity, along with the lack of a suitable neutron beam facility, had so far prevented further measurements. The detection system is subject to considerable radiation damage, but is capable of disentangling the rare reaction signals from the very high background. This newly developed setup could likely be useful also to study other challenging reactions requiring the detectors to be installed directly in the neutron beam.
|
|
|
n_TOF Collaboration(Patronis, N. et al), Babiano-Suarez, V., Balibrea Correa, J., Domingo-Pardo, C., Ladarescu, I., & Lerendegui-Marco, J. (2023). Status report of the n_TOF facility after the 2nd CERN long shutdown period. EPJ Tech. Instrum., 10(1), 13–10pp.
Abstract: During the second long shutdown period of the CERN accelerator complex (LS2, 2019-2021), several upgrade activities took place at the nTOF facility. The most important have been the replacement of the spallation target with a next generation nitrogen-cooled lead target. Additionally, a new experimental area, at a very short distance from the target assembly (the NEAR Station) was established. In this paper, the core commissioning actions of the new installations are described. The improvement in the nTOF infrastructure was accompanied by several detector development projects. All these upgrade actions are discussed, focusing mostly on the future perspectives of the n_TOF facility. Furthermore, some indicative current and future measurements are briefly reported.
|
|
|
n_TOF Collaboration(Tarrio, D. et al), Domingo-Pardo, C., Plag, R., Plompen, A., & Tain, J. L. (2011). High-energy Neutron-induced Fission Cross Sections of Natural Lead and Bismuth-209. J. Korean Phys. Soc., 59(2), 1904–1907.
Abstract: The CERN Neutron Time-Of-Flight (n_TOF) facility is well suited to measure small neutron-induced fission cross sections, as those of subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors. The fragment coincidence method allows to unambiguously identify the fission events. The present experiment provides the first results for neutron-induced fission up to 1 GeV for (nat)Pb and (209)Bi. A good agreement with previous experimental data below 200 MeV is shown. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross section is close to 1 GeV.
|
|
|
Papoulias, D. K., & Kosmas, T. S. (2015). Neutrino transition magnetic moments within the non-standard neutrino-nucleus interactions. Phys. Lett. B, 747, 454–459.
Abstract: Tensorial non-standard neutrino interactions are studied through a combined analysis of nuclear structure calculations and a sensitivity chi(2)-type of neutrino events expected to be measured at the COHERENT experiment, recently planned to operate at the Spallation Neutron Source (Oak Ridge). Potential sizeable predictions on transition neutrino magnetic moments and other electromagnetic parameters, such as neutrino milli-charges, are also addressed. The non-standard neutrino-nucleus processes, explored from nuclear physics perspectives within the context of quasi-particle random phase approximation, are exploited in order to estimate the expected number of events originating from vector and tensor exotic interactions for the case of reactor neutrinos, studied with TEXONO and GEMMA neutrino detectors.
|
|