|
Ancilotto, F., Barranco, M., Navarro, J., & Pi, M. (2016). A Density Functional Approach to Para-hydrogen at Zero Temperature. J. Low Temp. Phys., 185(1-2), 26–38.
Abstract: We have developed a density functional (DF) built so as to reproduce either the metastable liquid or the solid equation of state of bulk para-hydrogen, as derived from quantum Monte Carlo zero temperature calculations. As an application, we have used it to study the structure and energetics of small para-hydrogen clusters made of up to molecules. We compare our results for liquid clusters with diffusion Monte Carlo (DMC) calculations and find a fair agreement between them. In particular, the transition found within DMC between hollow-core structures for small N values and center-filled structures at higher N values is reproduced. The present DF approach yields results for (pH) clusters indicating that for small N values a liquid-like character of the clusters prevails, while solid-like clusters are instead energetically favored for .
|