|
Park, B. Y., Paeng, W. G., & Vento, V. (2019). The inhomogeneous phase of dense skyrmion matter. Nucl. Phys. A, 989, 231–245.
Abstract: It was predicted qualitatively in ref. [I] that skyrmion matter at low density is stable in an inhomogeneous phase where skyrmions condensate into lumps while the remaining space is mostly empty. The aim of this paper is to proof quantitatively this prediction. In order to construct an inhomogeneous medium we distort the original FCC crystal to produce a phase of planar structures made of skyrmions. We implement mathematically these planar structures by means of the 't Hooft instanton solution using the Atiyah-Manton ansatz. The results of our calculation of the average density and energy confirm the prediction suggesting that the phase diagram of the dense skyrmion matter is a lot more complex than a simple phase transition from the skyrmion FCC crystal lattice to the half-skyrmion CC one. Our results show that skyrmion matter shares common properties with standard nuclear matter developing a skin and leading to a binding energy equation which resembles the Weiszacker mass formula.
|
|
|
Vento, V. (2017). Skyrmions at high density. Int. J. Mod. Phys. E, 26(1-2), 1740029–15pp.
Abstract: The phase diagram of quantum chromodynamics is conjectured to have a rich structure containing at least three forms of matter: hadronic nuclear matter, quarkyonic matter and quark-gluon plasma. We justify the origin of the quarkyonic phase transition in a chiral-quark model and describe its formulation in terms of Skyrme crystals.
|
|
|
Vento, V. (2018). Skyrmions at high density. Phys. Part. Nuclei Lett., 15(4), 367–370.
Abstract: The phase diagram of quantum chromodynamics is conjectured to have a rich structure containing at least three forms of matter: hadronic nuclear matter, quarkyonic matter and quark gluon plasma. We describe its formulation in terms of Skyrme crystals and justify the origin of the quarkyonic phase transition in a chiral-quark model.
|
|