|
Boronat, M., Marinas, C., Frey, A., Garcia, I., Schwenker, B., Vos, M., et al. (2015). Physical Limitations to the Spatial Resolution of Solid-State Detectors. IEEE Trans. Nucl. Sci., 62(1), 381–386.
Abstract: In this paper we explore the effect of delta-ray emission and fluctuations in the signal deposition on the detection of charged particles in silicon-based detectors. We show that these two effects ultimately limit the resolution that can be achieved by interpolation of the signal in finely segmented position-sensitive solid-state devices.
|
|
Briz, J. A., Nerio, A. N., Ballesteros, C., Borge, M. J. G., Martinez, P., Perea, A., et al. (2022). Proton Radiographs Using Position-Sensitive Silicon Detectors and High-Resolution Scintillators. IEEE Trans. Nucl. Sci., 69(4), 696–702.
Abstract: Proton therapy is a cancer treatment technique currently in growth since it offers advantages with respect to conventional X-ray and gamma-ray radiotherapy. In particular, better control of the dose deposition allowing to reach higher conformity in the treatments causing less secondary effects. However, in order to take full advantage of its potential, improvements in treatment planning and dose verification are required. A new prototype of proton computed tomography scanner is proposed to design more accurate and precise treatment plans for proton therapy. Our prototype is formed by double-sided silicon strip detectors and scintillators of LaBr3(Ce) with high energy resolution and fast response. Here, the results obtained from an experiment performed using a 100-MeV proton beam are presented. Proton radiographs of polymethyl methacrylate (PMMA) samples of 50-mm thickness with spatial patterns in aluminum were taken. Their properties were studied, including reproduction of the dimensions, spatial resolution, and sensitivity to different materials. Structures of up to 2 mm are well resolved and the sensitivity of the system was enough to distinguish the thicknesses of 10 mm of aluminum or PMMA. The spatial resolution of the images was 0.3 line pairs per mm (MTF-10%). This constitutes the first step to validate the device as a proton radiography scanner.
|
|
Capra, S., Mengoni, D., Dueñas, J. A., John, P. R., Gadea, A., Aliaga, R. J., et al. (2019). Performance of the new integrated front-end electronics of the TRACE array commissioned with an early silicon detector prototype. Nucl. Instrum. Methods Phys. Res. A, 935, 178–184.
Abstract: The spectroscopic performances of the new integrated ASIC (Application-Specific Integrated Circuit) preamplifiers for highly segmented silicon detectors have been evaluated with an early silicon detector prototype of the TRacking Array for light Charged Ejectiles (TRACE). The ASICS were mounted on a custom-designed PCB (Printed Circuit Board) and the detector plugged on it. Energy resolution tests, performed on the same detector before and after irradiation, yielded a resolution of 21 keV and 33 keV FWHM respectively. The output signals were acquired with an array of commercial 100-MHz 14-bit digitizers. The preamplifier chip is equipped with an innovative Fast-Reset device that has two functions: it reduces dramatically the dead time of the preamplifier in case of saturation (from milliseconds to microseconds) and extends the spectroscopic dynamic range of the preamplifier by more than one order of magnitude. Other key points of the device are the low noise and the wide bandwidth.
|
|
Clinthorne, N., Brzezinski, K., Chesi, E., Cochran, E., Grkovski, M., Grosicar, B., et al. (2013). Silicon as an unconventional detector in positron emission tomography. Nucl. Instrum. Methods Phys. Res. A, 699, 216–220.
Abstract: Positron emission tomography (PET) is a widely used technique in medical imaging and in studying small animal models of human disease. In the conventional approach, the 511 keV annihilation photons emitted from a patient or small animal are detected by a ring of scintillators such as LYSO read out by arrays of photodetectors. Although this has been successful in achieving similar to 5 mm FWHM spatial resolution in human studies and similar to 1 mm resolution in dedicated small animal instruments, there is interest in significantly improving these figures. Silicon, although its stopping power is modest for 511 keV photons, offers a number of potential advantages over more conventional approaches including the potential for high intrinsic spatial resolution in 3D. To evaluate silicon in a variety of PET “magnifying glass” configurations, an instrument was constructed that consists of an outer partial-ring of PET scintillation detectors into which various arrangements of silicon detectors are inserted to emulate dual-ring or imaging probe geometries. Measurements using the test instrument demonstrated the capability of clearly resolving point sources of Na-22 having a 1.5 mm center-to-center spacing as well as the 1.2 mm rods of a F-18-filled resolution phantom. Although many challenges remain, silicon has potential to become the PET detector of choice when spatial resolution is the primary consideration. (C) 2012 Elsevier B.V. All rights reserved.
|
|
Grkovski, M., Brzezinski, K., Cindro, V., Clinthorne, N. H., Kagan, H., Lacasta, C., et al. (2015). Evaluation of a high resolution silicon PET insert module. Nucl. Instrum. Methods Phys. Res. A, 788, 86–94.
Abstract: Conventional PET systems can be augmented with additional detectors placed in close proximity of the region of interest. We developed a high resolution PET insert module to evaluate the added benefit of such a combination. The insert module consists of two back-to-back 1 mm thick silicon sensors, each segmented into 1040 1 mm(2) pads arranged in a 40 by 26 array. A set of 16 VATAGP7.1 ASICs and a custom assembled data acquisition board were used to read out the signal from the insert module. Data were acquired in slice (20) geometry with a Jaszczak phantom (rod diameters of 12-4.8 mm) Filled with F-18-FDG and the images were reconstructed with ML-EM method. Both data with full and limited angular coverage from the insert module were considered and three types of coincidence events were combined. The ratio of high-resolution data that substantially improves quality of the reconstructed image for the region near the surface of the insert module was estimated to be about 4%. Results from our previous studies suggest that such ratio could be achieved at a moderate technological expense by using an equivalent of two insert modules (an effective sensor thickness of 4 mm).
|
|
Labiche, M. et al, Caballero, L., & Rubio, B. (2010). TIARA: A large solid angle silicon array for direct reaction studies with radioactive beams. Nucl. Instrum. Methods Phys. Res. A, 614(3), 439–448.
Abstract: A compact, quasi-4 pi position sensitive silicon array. TIARA, designed to study direct reactions induced by radioactive beams in inverse kinematics is described here. The Transfer and Inelastic All-angle Reaction Array (TIARA) consists of 8 resistive charge division detectors forming an octagonal barrel around the target and a set of double-sided silicon-strip annular detectors positioned at each end of the barrel. The detector was coupled to the gamma-ray array EXOGAM and the spectrometer VAMOS at the GANIL Laboratory to demonstrate the potential of such an apparatus with radioactive beams. The N-14(d,p)N-15 reaction, well known in direct kinematics, has been carried out in inverse kinematics for that purpose. The observation of the N-15 ground state and excited states at 7.16 and 7.86 MeV is presented here as well as the comparison of the measured proton angular distributions with DWBA calculations. Transferred l-values are in very good agreement with both theoretical calculations and previous experimental results obtained in direct kinematics.
|
|
Mengoni, D., Duenas, J. A., Assie, M., Boiano, C., John, P. R., Aliaga, R. J., et al. (2014). Digital pulse-shape analysis with a TRACE early silicon prototype. Nucl. Instrum. Methods Phys. Res. A, 764, 241–246.
Abstract: A highly segmented silicon-pad detector prototype has been tested to explore the performance of the digital pulse shape analysis in the discrimination of the particles reaching the silicon detector. For the first time a 200 tun thin silicon detector, grown using an ordinary floating zone technique, has been shown to exhibit a level discrimination thanks to the fine segmentation. Light-charged particles down to few MeV have been separated, including their punch-through. A coaxial HPGe detector in time coincidence has further confirmed the quality of the particle discrimination.
|
|
Neri, N. et al, Jaimes Elles, S. J., Libralon, S., Martinez-Vidal, F., Mazorra de Cos, J., Sanderswood, I., et al. (2024). Advancements in experimental techniques for measuring dipole moments of short-lived particles at the LHC. Nucl. Instrum. Methods Phys. Res. A, 1069, 169875–5pp.
Abstract: ALADDIN is a proposed fixed-target experiment at the LHC for the direct measurement of charm baryon dipole moments. The detector features a spectrometer and a Cherenkov detector, while the experimental technique is based on the phenomena of particle channelling and spin precession in bent crystals. TWOCRYST, a proof-of- principle test at the LHC for the proposed experiment, is planned during the LHC Run 3. Recent channelling efficiency measurements performed at the CERN SPS of bent crystals developed at INFN are presented, marking significant progress towards its realisation. The silicon pixel detector for TWOCRYST is under construction. It will work in the secondary vacuum of a Roman Pot positioned inside the LHC beam pipe. The design, construction and integration of the pixel detector inside the Roman Pot will be discussed, along with the design and perspectives for the proposed ALADDIN experiment.
|
|
Studen, A., Brzezinski, K., Chesi, E., Cindro, V., Clinthorne, N. H., Cochran, E., et al. (2013). Silicon detectors for combined MR-PET and MR-SPECT imaging. Nucl. Instrum. Methods Phys. Res. A, 702, 88–90.
Abstract: Silicon based devices can extend PET-MR and SPECT-MR imaging to applications, where their advantages in performance outweigh benefits of high statistical counts. Silicon is in many ways an excellent detector material with numerous advantages, among others: excellent energy and spatial resolution, mature processing technology, large signal to noise ratio, relatively low price, availability, versatility and malleability. The signal in silicon is also immune to effects of magnetic field at the level normally used in MR devices. Tests in fields up to 7 T were performed in a study to determine effects of magnetic field on positron range in a silicon PET device. The curvature of positron tracks in direction perpendicular to the field's orientation shortens the distance between emission and annihilation point of the positron. The effect can be fully appreciated for a rotation of the sample for a fixed field direction, compressing range in all dimensions. A popular Ga-68 source was used showing a factor of 2 improvement in image noise compared to zero field operation. There was also a little increase in noise as the reconstructed resolution varied between 2.5 and 1.5 mm. A speculative applications can be recognized in both emission modalities, SPECT and PET. Compton camera is a subspecies of SPECT, where a silicon based scatter as a MR compatible part could inserted into the MR bore and the secondary detector could operate in less constrained environment away from the magnet. Introducing a Compton camera also relaxes requirements of the radiotracers used, extending the range of conceivable photon energies beyond 140.5 keV of the Tc-99m. In PET, one could exploit the compressed sub-millimeter range of positrons in the magnetic field. To exploit the advantage, detectors with spatial resolution commensurate to the effect must be used with silicon being an excellent candidate. Measurements performed outside of the MR achieving spatial resolution below 1 mm are reported.
|
|
Studen, A., Chesi, E., Cindro, V., Clinthorne, N. H., Cochran, E., Grosicar, B., et al. (2011). A silicon PET probe. Nucl. Instrum. Methods Phys. Res. A, 648, S255–S258.
Abstract: PET scanners with high spatial resolution offer a great potential in improving diagnosis, therapy monitoring and treatment validation for several severe diseases. One way to improve resolution of a PET scanner is to extend a conventional PET ring with a small probe with excellent spatial resolution. The probe is intended to be placed close to the area of interest. The coincidences of interactions within the probe and the external ring provide a subset of data which combined with data from external ring, greatly improve resolution in the area viewed by the probe. Our collaboration is developing a prototype of a PET probe, composed of high-resolution silicon pad detectors. The detectors are 1 mm thick, measuring 40 by 26 mm(2), and several such sensors are envisaged to either compensate for low stopping power of silicon or increase the area covered by the probe. The sensors are segmented into 1 mm(3) cubic voxels, giving 1040 readout pads per sensor. A module is composed of two sensors placed in a back-to-back configuration, allowing for stacking fraction of up to 70% within a module. The pads are coupled to a set of 16 ASICs (VaTaGP7.1 by IDEAS) per module and read out through a custom designed data acquisition board, allowing for trigger and data interfacing with the external ring. This paper presents an overview of probe requirements and expected performance parameters. It will focus on the characteristics of the silicon modules and their impact on overall probe performance, including spatial resolution, energy resolution and timing resolution. We will show that 1 mm(3) voxels will significantly extend the spatial resolution of conventional PET rings, and that broadening of timing resolution related to varying depth of photon interactions can be compensated to match the timing resolution of the external ring. The initial test results of the probe will also be presented.
|