|
AGATA Collaboration(Lalovic, N. et al), Gadea, A., & Domingo-Pardo, C. (2018). Study of isomeric states in Pb-198, Pb-200, Pb-202, Pb-206 and Hg-206 populated in fragmentation reactions. J. Phys. G, 45(3), 035105–27pp.
Abstract: Isomeric states in isotopes in the vicinity of doubly-magic Pb-208 were populated following reactions of a relativistic Pb-208 primary beam impinging on a Be-9 fragmentation target. Secondary beams of Pb-198,Pb-200,Pb-202,Pb-206 and Hg-206 were isotopically separated and implanted in a passive stopper positioned in the focal plane of the GSI Fragment Separator. Delayed gamma rays were detected with the Advanced Gamma Tracking Array (AGATA). Decay schemes were reevaluated and interpreted with shell-model calculations. The momentum-dependent population of isomeric states in the two-nucleon hole nuclei Pb-206/Hg-206 was found to differ from the population of multi neutron-hole isomeric states in Pb-198,Pb-200,Pb-202.
|
|
|
Bottoni, S. et al, Gadea, A., & Perez-Vidal, R. M. (2024). Search for the γ decay of the narrow near-threshold proton resonance in 11B. Phys. Lett. B, 855, 138851–4pp.
Abstract: The y decay of the elusive narrow, near-threshold proton resonance in 11 B was investigated at Laboratori Nazionali di Legnaro (INFN) in a particle-y coincidence experiment, using the 6 Li( 6 Li,py) fusion-evaporation reaction and the GALILEO-GALTRACE setup. No clear signature was found for a possible E1 decay to the 1/2-1, – 1 , first-excited state of 11 B, predicted by the Shell Model Embedded in the Continuum (SMEC) with a branching of 0.98+167 +167 -69 x 10-3 -3 with respect to the dominant particle-decaying modes. The statistical analysis of the y-ray spectrum provided an average upper limit of 2.37 x 10-3 -3 for this y-ray branching, with a global significance of 5 sigma. On the other hand, by imposing a global confidence level of 3 sigma, a significant excess of counts was observed for Ey y = 9300(20) keV, corresponding to a resonance energy of 11429(20) keV (namely 200(20) keV above the proton separation energy of 11 B) and a y-ray branching of 1.12(35) x10-3. -3 . This result is compatible with the SMEC calculations, potentially supporting the existence of a near-threshold proton resonance in 11 B.
|
|
|
Jungclaus, A. et al, Gadea, A., & Montaner-Piza, A. (2017). Observation of a gamma-decaying millisecond isomeric state in Cd-128(80). Phys. Lett. B, 772, 483–488.
Abstract: A new high-spin isomer in the neutron-rich nucleus Cd-128 was populated in the projectile fission of a U-238 beam at the Radioactive Isotope Beam Factory at RIKEN. A half-life of T-1/2 = 6.3(8) mswas measured for the new state which was tentatively assigned a spin/parity of (15(-)). The experimental results are compared to shell model calculations performed using state-of-the-art realistic effective interactions and to the neighbouring nucleus Cd-129. In the present experiment no evidence was found for the decay of a 18(+) E6 spin-trap isomer, based on the complete alignment of the two-neutron and two-proton holes in the 0h(11/2) and the 0g(9/2) orbit, respectively, which is predicted to exist by the shell model. (C) 2017 The Author(s). Published by Elsevier B.V.
|
|
|
Papoulias, D. K., Kosmas, T. S., Sahu, R., Kota, V. K. B., & Hota, M. (2020). Constraining nuclear physics parameters with current and future COHERENT data. Phys. Lett. B, 800, 135133–9pp.
Abstract: Motivated by the recent observation of coherent elastic neutrino-nucleus scattering (CE nu NS) at the COHERENT experiment, our goal is to explore its potential in probing important nuclear structure parameters. We show that the recent COHERENT data offers unique opportunities to investigate the neutron nuclear form factor. Our present calculations are based on the deformed Shell Model (DSM) method which leads to a better fit of the recent CE nu NS data, as compared to known phenomenological form factors such as the Helm-type, symmetrized Fermi and Klein-Nystrand. The attainable sensitivities and the prospects of improvement during the next phase of the COHERENT experiment are also considered and analyzed in the framework of two upgrade scenarios.
|
|
|
Sahin, E. et al, Gadea, A., & Algora, A. (2012). Structure of the N=50 As, Ge, Ga nuclei. Nucl. Phys. A, 893, 1–12.
Abstract: The level structures of the N = 50 As-83, Ge-82, and Ga-81 isotones have been investigated by means of multi-nucleon transfer reactions. A first experiment was performed with the CLARA PRISMA setup to identify these nuclei. A second experiment was carried out with the GASP array in order to deduce the gamma-ray coincidence information. The results obtained on the high-spin states of such nuclei are used to test the stability of the N = 50 shell closure in the region of Ni-78 (Z = 28). The comparison of the experimental level schemes with the shell-model calculations yields an N = 50 energy gap value of 4.7(3) MeV at Z = 28. This value, in a good agreement with the prediction of the finite-range liquid-drop model as well as with the recent large-scale shell model calculations, does not support a weakening of the N = 50 shell gap down to Z = 28.
Keywords: NUCLEAR REACTIONS U-238(Se-82, Ga-81), (Se-82, Ge-82), (Se-82, As-83), E=515 MeV; measured E-gamma, I-gamma (theta), gamma gamma-coin, reaction fragments, (fragment)gamma-coin using PRISMA magnetic spectrometer, gamma after deexcitation using Ge Compton-suppressed detectors of CLARA array, thin and thick target; deduced sigma(theta), levels, J, pi; calculated levels, J, pi using shell model
|
|
|
Taprogge, J. et al, Gadea, A., & Montaner-Piza, A. (2014). Identification of a millisecond isomeric state in Cd-129(81) via the detection of internal conversion and Compton electrons. Phys. Lett. B, 738, 223–227.
Abstract: The decay of an isomeric state in the neutron-rich nucleus Cd-129 has been observed via the detection of internal conversion and Compton electrons providing first experimental information on excited states in this nucleus. The isomer was populated in the projectile fission of a U-238 beam at the Radioactive Isotope Beam Factory at RIKEN. From the measured yields of gamma-rays and internal conversion electrons, a multipolarity of E3 was tentatively assigned to the isomeric transition. A half-life of T-1/2 = 3.6(2) ms was determined for the new state which was assigned a spin of (21/2(+)), based on a comparison to shell model calculations performed using state-of-the-art realistic effective interactions.
|
|
|
Yaneva, A. et al, & Algora, A. (2024). The shape of the Tz =+1 nucleus 94Pd and the role of proton-neutron interactions on the structure of its excited states. Phys. Lett. B, 855, 138805–7pp.
Abstract: Reduced transition probabilities have been extracted between excited, yrast states in the N = Z + 2 nucleus Pd-94. The transitions of interest were observed following decays of the I-pi = 14(+), E-x = 2129-keV isomeric state, which was populated following the projectile fragmentation of a Xe-124 primary beam at the GSI Helmholtzzentrum fur Schwerionenforschung accelerator facility as part of FAIR Phase-0. Experimental information regarding the reduced E2 transition strengths for the decays of the yrast 8(+) and 6(+) states was determined following isomer-delayed E-gamma 1 – E-gamma 2 – Delta T-2,T-1 coincidence method, using the LaBr3(Ce)-based FATIMA fast-timing coincidence gamma-ray array, which allowed direct determination of lifetimes of states in Pd-94 using the Generalized Centroid Difference (GCD) method. The experimental value for the half-life of the yrast 8(+) state of 755(106) ps results in a reduced transition probability of B(E2:8(+)-> 6(+)) = 205(-25)(+34) e(2) fm(4), which enables a precise verification of shell-model calculations for this unique system, lying directly between the N = Z line and the N = 50 neutron shell closure. The determined B(E2) value provides an insight into the purity of (g(9/2))(n) configurations in competition with admixtures from excitations between the (lower) N = 3pf and (higher) N = 4gds orbitals for the first time. The results indicate weak collectivity expected for near-zero quadrupole deformation and an increasing importance of the T = 0 proton-neutron interaction at N = 48.
|
|