|
Alvarado, F., Alvarez-Ruso, L., Hernandez, E., Nieves, J., & Penalva, N. (2024). The Λc → Λ ℓ+ ν ℓ weak decay including new physics. J. High Energy Phys., 10(10), 137–24pp.
Abstract: We investigate the Lambda(c) -> Lambda & ell;(+)nu(& ell;) decay with a focus on potential new physics (NP) effects in the & ell; = μchannel. We employ an effective Hamiltonian within the framework of the Standard Model Effective Field Theory (SMEFT) to consider generalized dimension-6 semileptonic c -> s operators of scalar, pseudoscalar, vector, axial-vector and tensor types. We rely on Lattice QCD (LQCD) for the hadronic transition form factors, using heavy quark spin symmetry (HQSS) to determine those that have not yet been obtained on the lattice. Uncertainties due to the truncation of the NP Hamiltonian and different implementations of HQSS are taken into account. As a result, we unravel the NP discovery potential of the Lambda(c) -> Lambda semileptonic decay in different observables. Our findings indicate high sensitivity to NP in lepton flavour universality ratios, probing multi-TeV scales in some cases. On the theoretical side, we identify LQCD uncertainties in axial and vector form factors as critical for improving NP sensitivity, alongside better SMEFT uncertainty estimations.
|
|
|
Bernlochner, F. U., Fedele, M., Kretz, T., Nierste, U., & Prim, M. T. (2025). Model independent bounds on heavy sterile neutrinos from the angular distribution of B → D*ℓν decays. J. High Energy Phys., 01(1), 040–23pp.
Abstract: In this paper we study the bounds that can be inferred on New Physics couplings to heavy sterile neutrinos N from the recent measurements performed by the Belle collaboration of the angular analysis of B -> D l nu l decays, with l = e, mu. Indeed, a sterile neutrino N may lead to competing B -> D & lowast;& ell;N<overline> decays and Belle might have measured an incoherent sum of these two independent channels. After reviewing the theoretical formalism required to describe this phenomenon in full generality, we first perform a bump hunt in the Mmiss2 Belle distribution to search for evidences of an additional massive neutrino. We found in such a way a small hint at Mmiss2 similar to (354 MeV)2. However, the Belle angular analysis is sensitive to N masses up to O(50 MeV), preventing us to further inspect this hint. Nevertheless, we study the potential impact of this additional channel in the allowed mass range on the measured angular distributions and extract model-independent bounds on the new-physics couplings which could mediate such an interaction. In particular, in the mass window here inspected, we obtain the most stringent bounds for vector and left-handed scalar operators to date.
|
|
|
Cirigliano, V., Diaz-Calderon, D., Falkowski, A., Gonzalez-Alonso, M., & Rodriguez-Sanchez, A. (2022). Semileptonic tau decays beyond the Standard Model. J. High Energy Phys., 04(4), 152–61pp.
Abstract: Hadronic tau decays are studied as probe of new physics. We determine the dependence of several inclusive and exclusive tau observables on the Wilson coefficients of the low-energy effective theory describing charged-current interactions between light quarks and leptons. The analysis includes both strange and non-strange decay channels. The main result is the likelihood function for the Wilson coefficients in the tau sector, based on the up-to-date experimental measurements and state-of-the-art theoretical techniques. The likelihood can be readily combined with inputs from other low-energy precision observables. We discuss a combination with nuclear beta, baryon, pion, and kaon decay data. In particular, we provide a comprehensive and model-independent description of the new physics hints in the combined dataset, which are known under the name of the Cabibbo anomaly.
|
|
|
Lopez Aguilar, D. A., Rendon, J., & Roig, P. (2025). CP violation in two-meson Tau decays induced by heavy new physics. J. High Energy Phys., 01(1), 105–24pp.
Abstract: We apply the effective field theory formalism that was used to study CP violation induced by heavy new physics in the tau -> KS pi nu tau decays to the other two-meson tau decay channels. We focus on the rate and the forward-backward asymmetries, that are predicted using current bounds on the complex Wilson coefficients of the effective Lagrangian. We discuss our outcomes for the modes with (K/pi)pi 0 and KKS, that can be studied at Belle-II and a super-tau-charm facility. Our main finding is that current and forthcoming experiments would be sensitive to the maximum allowed CP rate asymmetry in the K +/- KS modes if a precision of 5% is reached on this observable, that can check as well the BaBar anomaly in KS pi. For the pi +/-pi 0 channels, new physics would be difficult to probe at present. Disentangling new sources of CP violation would be most challenging in K +/-pi 0 and the other modes.
|
|
|
Penalva, N., Flynn, J. M., Hernandez, E., & Nieves, J. (2024). Study of new physics effects in (B)over-bars → Ds(*) τ-(ν)over-bar τ semileptonic decays using lattice QCD form factors and heavy quark effective theory. J. High Energy Phys., 01(1), 163–33pp.
Abstract: We benefit from the lattice QCD determination by the HPQCD of the Standard Model (SM) form factors for the (B) over bar (s) -> D-s [Phys. Rev. D101(2020) 074513] and the SM and tensor ones for the (B) over bar (s) -> D-s* (arXiv:2304.03137[hep-lat]) semileptonic decays, and the heavy quark effective theory (HQET) relations for the analogous B -> D-(*()) decays obtained by F.U. Bernlochner et al. in Phys. Rev. D95(2017) 115008, to extract the leading and sub-leading Isgur-Wise functions for the (B) over bar (s) -> D-s(()*()) decays. Further use of the HQET relations allows us to evaluate the corresponding scalar, pseudoscalar and tensor form factors needed for a phenomenological study of new physics (NP) effects on the (B) over bar (s) -> D-s(()*()) semileptonic decay. At present, the experimental values for the ratios R-D(*) = Gamma[ (B) over bar -> D-(*())(tau- (nu) over bar tau)]/Gamma[(B) over bar -> D-(*())e(-)(mu(-)) (nu) over bar (e(mu))]are the best signal in favor of lepton flavor universality violation (LFUV) seen in charged current (CC) b -> c decays. In this work we conduct a study of NP effects on the (B) over bar (s) -> D-s(()*()) tau(-)(tau) semileptonic decays by comparing tau spin, angular and spin-angular asymmetry distributions obtained within the SM and three different NP scenarios. As expected from SU(3) light-flavor symmetry, we get results close to the ones found in a similar analysis of the (B) over bar -> D-(*()) case. The measurement of the (B) over bar (s) -> D-s(()*())(l (nu) over bar tau) semileptonic decays, which is within reach of present experiments, could then be of relevance in helping to establish or rule out LFUV in CC b -> c transitions.
|
|