|
Alcaide, J., Chala, M., & Santamaria, A. (2018). LHC signals of radiatively-induced neutrino masses and implications for the Zee-Babu model. Phys. Lett. B, 779, 107–116.
Abstract: Contrary to the see-saw models, extended Higgs sectors leading to radiatively-induced neutrino masses do require the extra particles to be at the TeV scale. However, these new states have often exotic decays, to which experimental LHC searches performed so far, focused on scalars decaying into pairs of same-sign leptons, are not sensitive. In this paper we show that their experimental signatures can start to be tested with current LHC data if dedicated multi-region analyses correlating different observables are used. We also provide high-accuracy estimations of the complicated Standard Model backgrounds involved. For the case of the Zee-Babu model, we show that regions not yet constrained by neutrino data and low-energy experiments can be already probed, while most of the parameter space could be excluded at the 95% C.L. in a high-luminosity phase of the LHC.
|
|
|
ANTARES Collaboration(Adrian-Martinez, S. et al), Bigongiari, C., Dornic, D., Emanuele, U., Gomez-Gonzalez, J. P., Hernandez-Rey, J. J., et al. (2012). Search for neutrino emission from gamma-ray flaring blazars with the ANTARES telescope. Astropart Phys., 36(1), 204–210.
Abstract: The ANTARES telescope is well-suited to detect neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. Radio-loud active galactic nuclei with jets pointing almost directly towards the observer, the so-called blazars, are particularly attractive potential neutrino point sources. The all-sky monitor LAT on board the Fermi satellite probes the variability of any given gamma-ray bright blazar in the sky on time scales of hours to months. Assuming hadronic models, a strong correlation between the gamma-ray and the neutrino fluxes is expected. Selecting a narrow time window on the assumed neutrino production period can significantly reduce the background. An unbinned method based on the minimization of a likelihood ratio was applied to a subsample of data collected in 2008 (61 days live time). By searching for neutrinos during the high state periods of the AGN light curve, the sensitivity to these sources was improved by about a factor of two with respect to a standard time-integrated point source search. First results on the search for neutrinos associated with ten bright and variable Fermi sources are presented.
|
|
|
ATLAS Collaboration(Aad, G. et al), Amoros, G., Cabrera Urban, S., Castillo Gimenez, V., Costa, M. J., Escobar, C., et al. (2011). Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in root s=7 TeV proton-proton collisions. Phys. Lett. B, 701(2), 186–203.
Abstract: A search for squarks and gluinos in final states containing jets, missing transverse momentum and no electrons or muons is presented. The data were recorded by the ATLAS experiment in root s = 7 TeV proton-proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation was observed in 35 pb(-1) of analysed data. Gluino masses below 500 GeV are excluded at the 95% confidence level in simplified models containing only squarks of the first two generations, a gluino octet and a massless neutralino. The exclusion increases to 870 GeV for equal mass squarks and gluinos. In MSUGRA/CMSSM models with tan beta = 3, A(0) = 0 and μ> 0, squarks and gluinos of equal mass are excluded below 775 GeV. These are the most stringent limits to date.
|
|
|
ATLAS Collaboration(Aad, G. et al), Amos, K. R., Aparisi Pozo, J. A., Bailey, A. J., Cabrera Urban, S., Cantero, J., et al. (2023). Search for heavy resonances decaying into a Z or W boson and a Higgs boson in final states with leptons and b-jets in 139 fb(-1) of pp collisions at root s=13 TeV with the ATLAS detector. J. High Energy Phys., 06(6), 016–68pp.
Abstract: This article presents a search for new resonances decaying into a Z or W boson and a 125 GeV Higgs boson h, and it targets the v (v) over barb (b) over bar, l(+)l(-) b (b) over bar, or l(+/-) vb (b) over bar final states, where l – e or mu, in proton-proton collisions at root s – 13 TeV. The data used correspond to a total integrated luminosity of 139 fb(-1) collected by the ATLAS detector during Run 2 of the LHC at CERN. The search is conducted by examining the reconstructed invariant or transverse mass distributions of Zh or Wh candidates for evidence of a localised excess in the mass range from 220 GeV to 5TeV. No significant excess is observed and 95% confidence-level upper limits between 1.3 pb and 0.3 fb are placed on the production cross section times branching fraction of neutral and charged spin-1 resonances and CP-odd scalar bosons. These limits are converted into constraints on the parameter space of the Heavy Vector Triplet model and the two-Higgs-doublet model.
|
|
|
ATLAS Collaboration(Aad, G. et al), Cabrera Urban, S., Castillo Gimenez, V., Costa, M. J., Fassi, F., Ferrer, A., et al. (2013). A search for high-mass resonances decaying to tau(+)tau(-) in pp collisions at root s=7 TeV with the ATLAS detector. Phys. Lett. B, 719(4-5), 242–260.
Abstract: This Letter presents a search for high-mass resonances decaying into tau(+)tau(-) final states using proton-proton collisions at root s = 7 TeV produced by the Large Hadron Collider. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 4.6 fb(-1). No statistically significant excess above the Standard Model expectation is observed; 95% credibility upper limits are set on the cross section times branching fraction of Z' resonances decaying into tau(+)tau(-) pairs as a function of the resonance mass. As a result, Z' bosons of the Sequential Standard Model with masses less than 1.40 TeV are excluded at 95% credibility.
|
|
|
Boggia, M., Cruz-Martinez, J. M., Frellesvig, H., Glover, N., Gomez-Ambrosio, R., Gonella, G., et al. (2018). The HiggsTools handbook: a beginners guide to decoding the Higgs sector. J. Phys. G, 45(6), 065004–152pp.
Abstract: This report summarises some of the activities of the HiggsTools initial training network working group in the period 2015-2017. The main goal of this working group was to produce a document discussing various aspects of state-of-the-art Higgs physics at the large hadron collider (LHC) in a pedagogic manner The first part of the report is devoted to a description of phenomenological searches for new physics (NP) at the LHC. All of the available studies of the couplings of the new resonance discovered in 2012 by the ATLAS and CMS experiments (Aad et al (ATLAS Collaboration) 2012 Phys. Lett. B 716 1-29; Chatrchyan et al (CMS Collaboration) 2012 Phys. Lett. B 716 30-61) conclude that it is compatible with the Higgs boson of the standard model (SM) within present precision. So far the LHC experiments have given no direct evidence for any physical phenomena that cannot be described by the SM. As the experimental measurements become more and more precise, there is a pressing need for a consistent framework in which deviations from the SM predictions can be computed precisely. Such a framework should be applicable to measurements in all sectors of particle physics, not only LHC Higgs measurements but also electroweak precision data, etc. We critically review the use of the k-framework, fiducial and simplified template cross sections, effective field theories, pseudoobservables and phenomenological Lagrangians. Some of the concepts presented here are well known and were used already at the time of the large electron-positron collider (LEP) experiment. However, after years of theoretical and experimental development, these techniques have been refined, and we describe new tools that have been introduced in order to improve the comparison between theory and experimental data. In the second part of the report, we propose Phi(eta)* as a new and complementary observable for studying Higgs boson production at large transverse momentum in the case where the Higgs boson decays to two photons. The Phi(eta)* variable depends on measurements of the angular directions and rapidities of the two Higgs decay products rather than the energies, and exploits the information provided by the calorimeter in the detector. We show that, even without tracking information, the experimental resolution for Phi(eta)* is better than that of the transverse momentum of the photon pair, particularly at low transverse momentum. We make a detailed study of the phenomenology of the Phi(eta)* variable, contrasting the behaviour with the Higgs transverse momentum distribution using a variety of theoretical tools including event generators and fixed order perturbative computations. We consider the theoretical uncertainties associated with both p TH and Phi(eta)* distributions. Unlike the transverse momentum distribution, the Phi(eta)* distribution is well predicted using the Higgs effective field theory in which the top quark is integrated out-even at large values of Phi(eta)*-thereby making this a better observable for extracting the parameters of the Higgs interaction. In contrast, the potential of the Phi(eta)* distribution as a probe of NP is rather limited, since although the overall rate is affected by the presence of additional heavy fields, the shape of the Phi(eta)* distribution is relatively insensitive to heavy particle thresholds.
|
|
|
Feng, J. L. et al, Garcia Soto, A., & Hirsch, M. (2023). The Forward Physics Facility at the High-Luminosity LHC. J. Phys. G, 50(3), 030501–410pp.
Abstract: High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential.
|
|
|
Mavromatos, N. E., & Mitsou, V. A. (2020). Magnetic monopoles revisited: Models and searches at colliders and in the Cosmos. Int. J. Mod. Phys. A, 35(23), 2030012–81pp.
Abstract: In this review, we discuss recent developments in both the theory and the experimental searches of magnetic monopoles in past, current and future colliders and in the Cosmos. The theoretical models include, apart from the standard Grand Unified Theories, extensions of the Standard Model that admit magnetic monopole solutions with finite energy and masses that can be as light as a few TeV. Specifically, we discuss, among other scenarios, modified Cho-Maison monopoles and magnetic monopoles in (string-inspired, higher derivative) Born-Infeld extensions of the hypercharge sector of the Standard Model. We also outline the conditions for which effective field theories describing the interaction of monopoles with photons are valid and can be used for result interpretation in monopole production at colliders. The experimental part of the review focuses on, past and present, cosmic and collider searches, including the latest bounds on monopole masses and magnetic charges by the ATLAS and MoEDAL experiments at the LHC, as well as prospects for future searches.
|
|
|
NEXT Collaboration(Cebrian, S. et al), Perez, J., Alvarez, V., Benlloch-Rodriguez, J., Botas, A., Carcel, S., et al. (2017). Radiopurity assessment of the energy readout for the NEXT double beta decay experiment. J. Instrum., 12, T08003–20pp.
Abstract: The “Neutrino Experiment with a Xenon Time-Projection Chamber” (NEXT) experiment intends to investigate the neutrinoless double beta decay of Xe-136, and therefore requires a severe suppression of potential backgrounds. An extensive material screening and selection process was undertaken to quantify the radioactivity of the materials used in the experiment. Separate energy and tracking readout planes using different sensors allow us to combine the measurement of the topological signature of the event for background discrimination with the energy resolution optimization. The design of radiopure readout planes, in direct contact with the gas detector medium, was especially challenging since the required components typically have activities too large for experiments demanding ultra-low background conditions. After studying the tracking plane, here the radiopurity control of the energy plane is presented, mainly based on gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterraneo de Canfranc (Spain). All the available units of the selected model of photomultiplier have been screened together with most of the components for the bases, enclosures and windows. According to these results for the activity of the relevant radioisotopes, the selected components of the energy plane would give a contribution to the overall background level in the region of interest of at most 2.4 x 10(-4) counts keV(-1) kg(-1) y(-1), satisfying the sensitivity requirements of the NEXT experiment.
|
|