|
ATLAS Tile Calorimeter Community(Abdallah, J. et al), Castillo Gimenez, V., Costelo, J., Ferrer, A., Fullana, E., Gonzalez, V., et al. (2013). The optical instrumentation of the ATLAS Tile Calorimeter. J. Instrum., 8, P01005–21pp.
Abstract: The Tile Calorimeter, covering the central region of the ATLAS experiment up to pseudorapidities of +/-1.7, is a sampling device built with scintillating tiles that alternate with iron plates. The light is collected in wave-length shifting (WLS) fibers and is read out with photomultipliers. In the characteristic geometry of this calorimeter the tiles lie in planes perpendicular to the beams, resulting in a very simple and modular mechanical and optical layout. This paper focuses on the procedures applied in the optical instrumentation of the calorimeter, which involved the assembly of about 460,000 scintillator tiles and 550,000 WLS fibers. The outcome is a hadronic calorimeter that meets the ATLAS performance requirements, as shown in this paper.
|
|
Double Chooz collaboration(Abrahao, T. et al), & Novella, P. (2018). Novel event classification based on spectral analysis of scintillation waveforms in Double Chooz. J. Instrum., 13, P01031–26pp.
Abstract: Liquid scintillators are a common choice for neutrino physics experiments, but their capabilities to perform background rejection by scintillation pulse shape discrimination is generally limited in large detectors. This paper describes a novel approach for a pulse shape based event classification developed in the context of the Double Chooz reactor antineutrino experiment. Unlike previous implementations, this method uses the Fourier power spectra of the scintillation pulse shapes to obtain event-wise information. A classification variable built from spectral information was able to achieve an unprecedented performance, despite the lack of optimization at the detector design level. Several examples of event classification are provided, ranging from differentiation between the detector volumes and an efficient rejection of instrumental light noise, to some sensitivity to the particle type, such as stopping muons, ortho-positronium formation, alpha particles as well as electrons and positrons. In combination with other techniques the method is expected to allow for a versatile and more efficient background rejection in the future, especially if detector optimization is taken into account at the design level.
|
|
Garcia, A. R., Martinez, T., Cano-Ott, D., Castilla, J., Guerrero, C., Marin, J., et al. (2012). MONSTER: a time of flight spectrometer for beta-delayed neutron emission measurements. J. Instrum., 7, C05012–12pp.
Abstract: The knowledge of the beta-decay properties of nuclei contributes decisively to our understanding of nuclear phenomena: the beta-delayed neutron emission of neutron rich nuclei plays an important role in the nucleosynthesis r-process and constitutes a probe for nuclear structure of very neutron rich nuclei providing information about the high energy part of the full beta strength (S-beta) function. In addition, beta-delayed neutrons are essential for the control and safety of nuclear reactors. In order to determine the neutron energy spectra and emission probabilities from neutron precursors a MOdular Neutron time-of-flight SpectromeTER (MONSTER) has been proposed for the DESPEC experiment at the future FAIR facility. The design of MONSTER and status of its construction are reported in this work.
|
|
NEXT Collaboration(Rogers, L. et al), Alvarez, V., Benlloch-Rodriguez, J. M., Botas, A., Carcel, S., Carrion, J. V., et al. (2018). High voltage insulation and gas absorption of polymers in high pressure argon and xenon gases. J. Instrum., 13, P10002–19pp.
Abstract: High pressure gas time projection chambers (HPGTPCs) are made with a variety of materials, many of which still await proper characterization in high pressure noble gas environments. As HPGTPCs increase in size toward ton-scale detectors, assemblies become larger and more complex, creating a need for detailed understanding of how structural supports and high voltage insulators behave. This includes identification of materials with predictable mechanical properties and without surface charge accumulation that may lead to field deformation or sparking. This paper explores the mechanical and electrical effects of high pressure gas environments on insulating polymers PTFE, HDPE, PEEK, POM and UHMW in argon and xenon, including studying gas absorption, swelling and high voltage insulation strength.
|
|
Oliveira, C. A. B., Sorel, M., Martin-Albo, J., Gomez-Cadenas, J. J., Ferreira, A. L., & Veloso, J. F. C. A. (2011). Energy resolution studies for NEXT. J. Instrum., 6, P05007–13pp.
Abstract: This work aims to present the current state of simulations of electroluminescence (EL) produced in gas-based detectors with special interest for NEXT – Neutrino Experiment with a Xenon TPC. NEXT is a neutrinoless double beta decay experiment, thus needs outstanding energy resolution which can be achieved by using electroluminescence. The process of light production is reviewed and properties such as EL yield and associated fluctuations, excitation and electroluminescence efficiencies, and energy resolution, are calculated. An EL production region with a 5 mm width gap between two infinite parallel planes is considered, where a uniform electric field is produced. The pressure and temperature considered are 10 bar and 293 K, respectively. The results show that, even for low values of VUV photon detection efficiency, good energy resolution can be achieved: below 0.4% (FWHM) at Q(beta beta) = 2.458 MeV.
|