|
Azevedo, C. D. R., Baeza, A., Chauveau, E., Corbacho, J. A., Diaz, J., Domange, J., et al. (2023). Development of a real-time tritium-in-water monitor. J. Instrum., 18(12), T12008–14pp.
Abstract: In this paper, we report the development and performance of a detector module envisaging a tritium-in-water real-time activity monitor. The monitor is based on modular detection units whose number can be chosen according to the required sensitivity. The full system is being designed to achieve a Minimum Detectable Activity (MDA) of 100 Bq/L of tritium-in-water activity which is the limit established by the E.U. Council Directive 2013/51/Euratom for water intended for human consumption. The same system can be used as a real-time pre-alert system for nuclear power plant regarding tritium-in water environmental surveillance. The first detector module was characterized, commissioned and installed immediately after the discharge channel of the Arrocampo dam (Almaraz nuclear power plant, Spain) on the Tagus river. Due to the high sensitivity of the single detection modules, the system requires radioactive background mitigation techniques through the use of active and passive shielding. We have extrapolated a MDA of 3.6 kBq/L for a single module being this value limited by the cosmic background. The obtained value for a single module is already compatible with a real-time environmental surveillance and pre-alert system. Further optimization of the single-module sensitivity will imply the reduction of the number of modules and the cost of the detector system.
|
|
Boughaba, N. E., Bouzid, B., & Yahlali, N. (2025). Assessment of Cerenkov optical noise in a brachytherapy scintillating fibre dosimeter with an air-core Ag-PTFE light guide. Radiat. Meas., 181, 107348–11pp.
Abstract: Plastic scintillating fibre dosimeters have been the subject of multiple studies in the field of medical dosimetry, due to their notable dosimetric properties, including water equivalence, small size and absence of energy and dose rate dependence. The main drawback of this dosimeter type in high dose-rate brachytherapy is the presence of Cerenkov photons produced by electrons with velocities exceeding the speed of light in the fibre plastic medium. In this work, aimed at minimizing Cerenkov noise at its source in a prototype scintillation fibre dosimeter, the plastic light guide exposed to the radiation field was replaced by an air-core Ag-PTFE light guide of miniature size. Cerenkov-to-signal ratio was first assessed in fibre bundles using a dedicated experimental setup and simulations. This ratio was found of about similar to 1 % for scintillating fibres when exposed to radiation in the energy range 1-2 MeV. The performance of the air-core Ag-PTFE light guide dosimeter was then studied, resulting in a decrease of the Cerenkov light in the total signal from similar to 50 % to less than 0.3%, compared to the standard dosimeter with a plastic optical light guide. The counterpart of this substantial reduction of optical noise is a reduction of 40% in the dosimeter light collection efficiency. However, this is not a limiting feature of this Cerenkov-free dosimeter, since further optical optimizations are possible, in addition to the use of a high-gain and high-sensitivity photodetector for its readout.
|