|
|
Kosmas, T. S., Miranda, O. G., Papoulias, D. K., Tortola, M., & Valle, J. W. F. (2015). Sensitivities to neutrino electromagnetic properties at the TEXONO experiment. Phys. Lett. B, 750, 459–465.
Abstract: The possibility of measuring neutral-current coherent elastic neutrino nucleus scattering (CENNS) at the TEXONO experiment has opened high expectations towards probing exotic neutrino properties. Focusing on low threshold Germanium-based targets with kg-scale mass, we find a remarkable efficiency not only for detecting CENNS events due to the weak interaction, but also for probing novel electromagnetic neutrino interactions. Specifically, we demonstrate that such experiments are complementary in performing precision Standard Model tests as well as in shedding light on sub-leading effects due to neutrino magnetic moment and neutrino charge radius. This work employs realistic nuclear structure calculations based on the quasi-particle random phase approximation (QRPA) and takes into consideration the crucial quenching effect corrections. Such a treatment, in conjunction with a simple statistical analysis, shows that the attainable sensitivities are improved by one order of magnitude as compared to previous studies.
|
|
|
|
Papoulias, D. K., & Kosmas, T. S. (2015). Neutrino transition magnetic moments within the non-standard neutrino-nucleus interactions. Phys. Lett. B, 747, 454–459.
Abstract: Tensorial non-standard neutrino interactions are studied through a combined analysis of nuclear structure calculations and a sensitivity chi(2)-type of neutrino events expected to be measured at the COHERENT experiment, recently planned to operate at the Spallation Neutron Source (Oak Ridge). Potential sizeable predictions on transition neutrino magnetic moments and other electromagnetic parameters, such as neutrino milli-charges, are also addressed. The non-standard neutrino-nucleus processes, explored from nuclear physics perspectives within the context of quasi-particle random phase approximation, are exploited in order to estimate the expected number of events originating from vector and tensor exotic interactions for the case of reactor neutrinos, studied with TEXONO and GEMMA neutrino detectors.
|
|
|
|
Ternes, C. A., & Tortola, M. (2025). Neutrino magnetic moments: effective versus fundamental parameters. Nucl. Phys. B, 1019, 117107–8pp.
Abstract: The search for neutrino magnetic moments offers a valuable window into physics beyond the Standard Model. However, a common misconception arises in the interpretation of experimental results: the assumption that the so-called effective neutrino magnetic moment is a universal, experiment-independent quantity. In reality, this effective parameter depends on the specific characteristics of each experiment, including the neutrino source, flavor composition or energy spectrum. As a result, the effective magnetic moment derived from solar neutrino data differs fundamentally from that obtained in reactor or accelerator-based experiments. Treating these quantities as directly comparable can lead to misleading conclusions. In this work, we clarify the proper definition of the effective neutrino magnetic moment in various experimental contexts and discuss the implications of this misconception for global analyses and theoretical interpretations.
|
|