|
Nieves, J., & Sobczyk, J. E. (2017). In medium dispersion relation effects in nuclear inclusive reactions at intermediate and low energies. Ann. Phys., 383, 455–496.
Abstract: In a well-established many-body framework, successful in modeling a great variety of nuclear processes, we analyze the role of the spectral functions (SFs) accounting for the modifications of the dispersion relation of nucleons embedded in a nuclear medium. We concentrate in processes mostly governed by one-body mechanisms, and study possible approximations to evaluate the particle hole propagator using SFs. We also investigate how to include together SFs and long-range RPA-correlation corrections in the evaluation of nuclear response functions, discussing the existing interplay between both type of nuclear effects. At low energy transfers (<= 50 MeV), we compare our predictions for inclusive muon and radiative pion captures in nuclei, and charge-current (CC) neutrino-nucleus cross sections with experimental results. We also present an analysis of intermediate energy quasi-elastic neutrino scattering for various targets and both neutrino and antineutrino CC driven processes. In all cases, we pay special attention to estimate the uncertainties affecting the theoretical predictions. In particular, we show that errors on the a,,sigma(mu)/sigma(e) ratio are much smaller than 5%, and also much smaller than the size of the SF+RPA nuclear corrections, which produce significant effects, not only in the individual cross sections, but also in their ratio for neutrino energies below 400 MeV. These latter nuclear corrections, beyond Pauli blocking, turn out to be thus essential to achieve a correct theoretical understanding of this ratio of cross sections of interest for appearance neutrino oscillation experiments. We also briefly compare our SF and RPA results to predictions obtained within other representative approaches.
|
|
|
Vitez-Sveiczer, A. et al, Algora, A., Morales, A. I., Rubio, B., Agramunt, J., Guadilla, V., et al. (2022). The beta-decay of Kr-70 into Br-70: Restoration of the pseudo-SU(4) symmetry. Phys. Lett. B, 830, 137123–8pp.
Abstract: The beta-decay of the even-even nucleus Kr-70 with Z=N+2, has been investigated at the Radioactive Ion Beam Factory (RIBF) of the RIKEN Nishina Center using the BigRIPS fragment separator, the ZeroDegree Spectrometer, the WAS3ABI implantation station and the EURICA HPGe cluster array. Fifteen gamma-rays associated with the beta-decay of( 70)Kr into Br-70 have been identified for the first time, defining ten populated states below E-exc=3300 keV. The half-life of Kr-70 was derived with increased precision and found to be t(1/2)=45.19 +/- 0.14 ms. The beta-delayed proton emission probability has also been determined as epsilon(p)=0.545(23)%. An increase in the beta-strength to the yrast 1(+) state in comparison with the heaviest Z=N+2 system studied so far (Ge-62 decay) is observed that may indicate increased np correlations in the T=0 channel. The beta-decay strength deduced from the results is interpreted in terms of the proton-neutron quasiparticle random-phase approximation (pnQRPA) and also with a schematic model that includes isoscalar and isovector pairing in addition to quadrupole deformation. The application of this last model indicates an approximate realization of pseudo-SU(4) symmetry in this system.
|
|