|
Agullo, I., del Rio, A., & Navarro-Salas, J. (2017). Gravity and handedness of photons. Int. J. Mod. Phys. D, 26(12), 1742001–5pp.
Abstract: Vacuum fluctuations of quantum fields are altered in the presence of a strong gravitational background, with important physical consequences. We argue that a nontrivial spacetime geometry can act as an optically active medium for quantum electromagnetic radiation, in such a way that the state of polarization of radiation changes in time, even in the absence of electromagnetic sources. This is a quantum effect, and is a consequence of an anomaly related to the classical invariance under electric-magnetic duality rotations in Maxwell theory.
|
|
Delhom, A., Mariz, T., Nascimento, J. R., Olmo, G. J., Petrov, A. Y., & Porfirio, P. J. (2022). Spontaneous Lorentz symmetry breaking and one-loop effective action in the metric-affine bumblebee gravity. J. Cosmol. Astropart. Phys., 07(7), 018–27pp.
Abstract: The metric-affine bumblebee model in the presence of fermionic matter minimally coupled to the connection is studied. We show that the model admits an Einstein frame representation in which the matter sector is described by a non-minimal Dirac action without any analogy in the literature. Such non-minimal terms involve unconventional couplings between the bumblebee and the fermion field. We then rewrite the quadratic fermion action in the Einstein frame in the basis of 16 Dirac matrices in order to identify the coefficients for Lorentz/CPT violation in all orders of the non-minimal coupling xi. The exact result for the fermionic determinant in the Einstein frame, including all orders in xi, is also provided. We demonstrate that the axial contributions are at least of second order in the perturbative expansion of xi. Furthermore, we compute the one-loop effective potential within the weak field approximation.
|