|
Aguilera-Verdugo, J. D., Driencourt-Mangin, F., Hernandez-Pinto, R. J., Plenter, J., Prisco, R. M., Ramirez-Uribe, N. S., et al. (2021). A Stroll through the Loop-Tree Duality. Symmetry-Basel, 13(6), 1029–37pp.
Abstract: The Loop-Tree Duality (LTD) theorem is an innovative technique to deal with multi-loop scattering amplitudes, leading to integrand-level representations over a Euclidean space. In this article, we review the last developments concerning this framework, focusing on the manifestly causal representation of multi-loop Feynman integrals and scattering amplitudes, and the definition of dual local counter-terms to cancel infrared singularities.
|
|
|
Faleiro, R., Pavao, R., Costa, H. A. S., Hiller, B., Blin, A. H., & Sampaio, M. (2020). Perturbative approach to entanglement generation in QFT using the S matrix. J. Phys. A, 53(36), 365301–19pp.
Abstract: We compute the variation of the von Neumann (VN) entropy Delta Sbetween the asymptoticinandoutmomenta modes of a real scalar field A, when elastically scattered against the modes of another scalar field B. This is done to see how the entanglement between the two fields' momenta changes under the scattering procedure. The calculation is separated into two case studies, one where the fields' asymptoticinstates are separable, and another where they are arbitrarily entangled. We perform a perturbative calculation to one loop order in the separable case, and verify that Delta Schanges in a non-trivial way when we vary the momentum of the incoming field modes and/or the coupling of the theory. Finally, also in the separable case, we show an explicit dependence between Delta Sand the cross-section of the collision, consistent with perturbation theory.
|
|
|
Fernandez-Silvestre, D., Foo, J., & Good, M. R. R. (2022). On the duality of Schwarzschild-de Sitter spacetime and moving mirror. Class. Quantum Gravity, 39(5), 055006–18pp.
Abstract: The Schwarzschild-de Sitter (SdS) metric is the simplest spacetime solution in general relativity with both a black hole event horizon and a cosmological event horizon. Since the Schwarzschild metric is the most simple solution of Einstein's equations with spherical symmetry and the de Sitter metric is the most simple solution of Einstein's equations with a positive cosmological constant, the combination in the SdS metric defines an appropriate background geometry for semi-classical investigation of Hawking radiation with respect to past and future horizons. Generally, the black hole temperature is larger than that of the cosmological horizon, so there is heat flow from the smaller black hole horizon to the larger cosmological horizon, despite questions concerning the definition of the relative temperature of the black hole without a measurement by an observer sitting in an asymptotically flat spacetime. Here we investigate the accelerating boundary correspondence of the radiation in SdS spacetime without such a problem. We have solved for the boundary dynamics, energy flux and asymptotic particle spectrum. The distribution of particles is globally non-thermal while asymptotically the radiation reaches equilibrium.
|
|
|
Ramirez-Uribe, S., Hernandez-Pinto, R. J., Rodrigo, G., & Sborlini, G. F. R. (2022). From Five-Loop Scattering Amplitudes to Open Trees with the Loop-Tree Duality. Symmetry-Basel, 14(12), 2571–14pp.
Abstract: Characterizing multiloop topologies is an important step towards developing novel methods at high perturbative orders in quantum field theory. In this article, we exploit the Loop-Tree Duality (LTD) formalism to analyse multiloop topologies that appear for the first time at five loops. Explicitly, we open the loops into connected trees and group them according to their topological properties. Then, we identify a kernel generator, the so-called N7MLT universal topology, that allows us to describe any scattering amplitude of up to five loops. Furthermore, we provide factorization and recursion relations that enable us to write these multiloop topologies in terms of simpler subtopologies, including several subsets of Feynman diagrams with an arbitrary number of loops. Our approach takes advantage of many symmetries present in the graphical description of the original fundamental five-loop topologies. The results obtained in this article might shed light into a more efficient determination of higher-order corrections to the running couplings, which are crucial in the current and future precision physics program.
|
|