|
Aguilera-Verdugo, J. J., Hernandez-Pinto, R. J., Rodrigo, G., Sborlini, G. F. R., & Torres Bobadilla, W. J. (2021). Mathematical properties of nested residues and their application to multi-loop scattering amplitudes. J. High Energy Phys., 02(2), 112–42pp.
Abstract: The computation of multi-loop multi-leg scattering amplitudes plays a key role to improve the precision of theoretical predictions for particle physics at high-energy colliders. In this work, we focus on the mathematical properties of the novel integrand-level representation of Feynman integrals, which is based on the Loop-Tree Duality (LTD). We explore the behaviour of the multi-loop iterated residues and explicitly show, by developing a general compact and elegant proof, that contributions associated to displaced poles are cancelled out. The remaining residues, called nested residues as originally introduced in ref. [1], encode the relevant physical information and are naturally mapped onto physical configurations associated to nondisjoint on-shell states. By going further on the mathematical structure of the nested residues, we prove that unphysical singularities vanish, and show how the final expressions can be written by using only causal denominators. In this way, we provide a mathematical proof for the all-loop formulae presented in ref. [2].
|
|
|
Alioli, S., Fuster, J., Garzelli, M. V., Gavardi, A., Irles, A., Melini, D., et al. (2022). Phenomenology of t(t)over-barj plus X production at the LHC. J. High Energy Phys., 05(5), 146–63pp.
Abstract: We present phenomenological results for t (t) over barj + X production at the Large Hadron Collider, of interest for designing forthcoming experimental analyses of this process. We focus on those cases where the t (t) over barj + X process is considered as a signal. We discuss present theoretical uncertainties and the dependence on relevant input parameters entering the computation. For the R. distribution, which depends on the invariant mass of the t (t) over barj-system, we present reference predictions in the on-shell, (MS) over bar and MSR top-quark mass renormalization schemes, applying the latter scheme to this process for the first time. Our conclusions are particularly interesting for those analyses aiming at extracting the topquark mass from cross-section measurements.
|
|
|
Alvarez, M., Cantero, J., Czakon, M., Llorente, J., Mitov, A., & Poncelet, R. (2023). NNLO QCD corrections to event shapes at the LHC. J. High Energy Phys., 03(3), 129–24pp.
Abstract: In this work we perform the first ever calculation of jet event shapes at hadron colliders at next-to-next-to leading order (NNLO) in QCD. The inclusion of higher order corrections removes the shape difference observed between data and next-to-leading order predictions. The theory uncertainty at NNLO is comparable to, or slightly larger than, existing measurements. Except for narrow kinematical ranges where all-order resummation becomes important, the NNLO predictions for the event shapes considered in the present work are reliable. As a prime application of the results derived in this work we provide a detailed investigation of the prospects for the precision determination of the strong coupling constant and its running through TeV scales from LHC data.
|
|
|
Ayala, C., Cvetic, G., & Kogerler, R. (2017). Lattice-motivated holomorphic nearly perturbative QCD. J. Phys. G, 44(7), 075001–30pp.
Abstract: Newer lattice results indicate that, in the Landau gauge at low spacelike momenta, the gluon propagator and the ghost dressing function are finite non-zero. This leads to a definition of the QCD running coupling, in a specific scheme, that goes to zero at low spacelike momenta. We construct a running coupling which fulfills these conditions, and at the same time reproduces to a high precision the perturbative behavior at high momenta. The coupling is constructed in such a way that it reflects qualitatively correctly the holomorphic (analytic) behavior of spacelike observables in the complex plane of the squared momenta, as dictated by the general principles of quantum field theories. Further, we require the coupling to reproduce correctly the nonstrange semihadronic decay rate of tau lepton which is the best measured low-momentum QCD observable with small higher-twist effects. Subsequent application of the Borel sum rules to the V + A spectral functions of tau lepton decays, as measured by OPAL Collaboration, determines the values of the gluon condensate and of the V + A six-dimensional condensate, and reproduces the data to a significantly higher precision than the usual (MS) over bar running coupling.
|
|
|
Belov, I., Giachino, A., & Santopinto, E. (2025). Fully charmed tetraquark production at the LHC experiments. J. High Energy Phys., 01(1), 093–29pp.
Abstract: We develop the formalism for production of a fully heavy tetraquark and apply it to the calculation of pp -> T4c + X cross-sections. We demonstrate that the production cross-section of a fully heavy tetraquark, even if it is a diquark-antidiquark cluster, can be obtained in the meson-like basis, for which the spin-color projection technique is well established. Prompted by the recent LHCb, ATLAS and CMS data, we perform a pQCD calculation of O(alpha s5) short-distance factors in the dominant channel of gluon fusion, and match these to the four-body T4c wave functions in order to obtain the unpolarized T4c(0++, 1+-, 2++) cross-sections. The novelty in comparison with the recently published article [1] lies in the fact that we predict the absolute values as well as the d sigma/dpT spectra in the kinematic ranges accessible at the ongoing LHC experiments. From the comparison with the signal yield at LHCb we derive the constraints on the Phi <middle dot> Br(J/psi J/psi) (reduced wave function times branching) product for the T4c candidates for X(6900) and observe that X(6900) is compatible with a 2++(2S) state.
|
|
|
Bierenbaum, I., Buchta, S., Draggiotis, P., Malamos, I., & Rodrigo, G. (2013). Tree-loop duality relation beyond single poles. J. High Energy Phys., 03(3), 025–24pp.
Abstract: We develop the Tree-Loop Duality Relation for two- and three-loop integrals with multiple identical propagators (multiple poles). This is the extension of the Duality Relation for single poles and multi-loop integrals derived in previous publications. We prove a generalization of the formula for single poles to multiple poles and we develop a strategy for dealing with higher-order pole integrals by reducing them to single pole integrals using Integration By Parts.
|
|
|
Bordes, J., Dominguez, C. A., Moodley, P., Peñarrocha, J., & Schilcher, K. (2010). Chiral corrections to the SU(2) x SU(2) Gell-Mann-Oakes-Renner relation. J. High Energy Phys., 05(5), 064–16pp.
Abstract: The next to leading order chiral corrections to the SU(2) x SU(2) Gell-Mann-Oakes- Renner (GMOR) relation are obtained using the pseudoscalar correlator to five-loop order in perturbative QCD, together with new finite energy sum rules (FESR) incorporating polynomial, Legendre type, integration kernels. The purpose of these kernels is to suppress hadronic contributions in the region where they are least known. This reduces considerably the systematic uncertainties arising from the lack of direct experimental information on the hadronic resonance spectral function. Three different methods are used to compute the FESR contour integral in the complex energy (squared) s-plane, i.e. Fixed Order Perturbation Theory, Contour Improved Perturbation Theory, and a fixed renormalization scale scheme. We obtain for the corrections to the GMOR relation, delta(pi), the value delta(pi) = (6.2 +/- 1.6)%. This result is substantially more accurate than previous determinations based on QCD sum rules; it is also more reliable as it is basically free of systematic uncertainties. It implies a light quark condensate < 0 vertical bar(u) over baru vertical bar 0 > similar or equal to < 0 vertical bar(d) over bard vertical bar 0 > < 0 vertical bar(q) over barq vertical bar 0 >vertical bar(2GeV) = (-267 +/- 5MeV)(3). As a byproduct, the chiral perturbation theory (unphysical) low energy constant H-2(r) is predicted to be H-2(r)(nu(X) = M-p) = -(5.1 +/- 1.8) x10(-3), or H-2(r) (nu(X) = M-eta) = -(5.7 +/- 2.0) x10(-3).
|
|
|
Buchta, S., Chachamis, G., Draggiotis, P., Malamos, I., & Rodrigo, G. (2014). On the singular behaviour of scattering amplitudes in quantum field theory. J. High Energy Phys., 11(11), 014–13pp.
Abstract: We analyse the singular behaviour of one-loop integrals and scattering amplitudes in the framework of the loop-tree duality approach. We show that there is a partial cancellation of singularities at the loop integrand level among the different components of the corresponding dual representation that can be interpreted in terms of causality. The remaining threshold and infrared singularities are restricted to a finite region of the loop momentum space, which is of the size of the external momenta and can be mapped to the phase-space of real corrections to cancel the soft and collinear divergences.
|
|
|
Campanario, F., & Kubocz, M. (2014). Higgs boson CP-properties of the gluonic contributions in Higgs plus three jet production via gluon fusion at the LHC. J. High Energy Phys., 10(10), 173–16pp.
Abstract: in high energy hadronic collisions, a general CP-violating Higgs boson Phi with accompanying jets can be efficiently produced via gluon fusion, which is mediated by heavy quark loops. In this article, we study the dominant sub-channel gg -> ggg Phi of the gluon fusion production process with triple real emission corrections at order alpha(5)(s). We go beyond the heavy top-quark approximation and include the full mass dependence of the top- and bottom-quark contributions. Furthermore, in a specific model we demonstrate the features of our program and show the impact of bottom-quark loop contributions in combination with large values of tan beta on differential distributions sensitive to CP-rneasurements of the Higgs boson.
|
|
|
Chachamis, G., Deak, M., Hentschinski, M., Rodrigo, G., & Sabio Vera, A. (2015). Single bottom quark production in kT-factorisation. J. High Energy Phys., 09(9), 123–17pp.
Abstract: We present a study within the k(T)-factorisation scheme on single bottom quark production at the LHC. In particular, we calculate the rapidity and transverse momentum differential distributions for single bottom quark/anti-quark production. In our setup, the unintegrated gluon density is obtained from the NLx BFKL Green function whereas we included mass effects to the Lx heavy quark jet vertex. We compare our results to the corresponding distributions predicted by the usual collinear factorisation scheme. The latter were produced with Pythia 8.1.
|
|