|
Aguilera-Verdugo, J. J., Hernandez-Pinto, R. J., Rodrigo, G., Sborlini, G. F. R., & Torres Bobadilla, W. J. (2021). Mathematical properties of nested residues and their application to multi-loop scattering amplitudes. J. High Energy Phys., 02(2), 112–42pp.
Abstract: The computation of multi-loop multi-leg scattering amplitudes plays a key role to improve the precision of theoretical predictions for particle physics at high-energy colliders. In this work, we focus on the mathematical properties of the novel integrand-level representation of Feynman integrals, which is based on the Loop-Tree Duality (LTD). We explore the behaviour of the multi-loop iterated residues and explicitly show, by developing a general compact and elegant proof, that contributions associated to displaced poles are cancelled out. The remaining residues, called nested residues as originally introduced in ref. [1], encode the relevant physical information and are naturally mapped onto physical configurations associated to nondisjoint on-shell states. By going further on the mathematical structure of the nested residues, we prove that unphysical singularities vanish, and show how the final expressions can be written by using only causal denominators. In this way, we provide a mathematical proof for the all-loop formulae presented in ref. [2].
|
|
|
Alioli, S., Fuster, J., Garzelli, M. V., Gavardi, A., Irles, A., Melini, D., et al. (2022). Phenomenology of t(t)over-barj plus X production at the LHC. J. High Energy Phys., 05(5), 146–63pp.
Abstract: We present phenomenological results for t (t) over barj + X production at the Large Hadron Collider, of interest for designing forthcoming experimental analyses of this process. We focus on those cases where the t (t) over barj + X process is considered as a signal. We discuss present theoretical uncertainties and the dependence on relevant input parameters entering the computation. For the R. distribution, which depends on the invariant mass of the t (t) over barj-system, we present reference predictions in the on-shell, (MS) over bar and MSR top-quark mass renormalization schemes, applying the latter scheme to this process for the first time. Our conclusions are particularly interesting for those analyses aiming at extracting the topquark mass from cross-section measurements.
|
|
|
Alvarez, M., Cantero, J., Czakon, M., Llorente, J., Mitov, A., & Poncelet, R. (2023). NNLO QCD corrections to event shapes at the LHC. J. High Energy Phys., 03(3), 129–24pp.
Abstract: In this work we perform the first ever calculation of jet event shapes at hadron colliders at next-to-next-to leading order (NNLO) in QCD. The inclusion of higher order corrections removes the shape difference observed between data and next-to-leading order predictions. The theory uncertainty at NNLO is comparable to, or slightly larger than, existing measurements. Except for narrow kinematical ranges where all-order resummation becomes important, the NNLO predictions for the event shapes considered in the present work are reliable. As a prime application of the results derived in this work we provide a detailed investigation of the prospects for the precision determination of the strong coupling constant and its running through TeV scales from LHC data.
|
|
|
Ayala, C., Cvetic, G., & Kogerler, R. (2017). Lattice-motivated holomorphic nearly perturbative QCD. J. Phys. G, 44(7), 075001–30pp.
Abstract: Newer lattice results indicate that, in the Landau gauge at low spacelike momenta, the gluon propagator and the ghost dressing function are finite non-zero. This leads to a definition of the QCD running coupling, in a specific scheme, that goes to zero at low spacelike momenta. We construct a running coupling which fulfills these conditions, and at the same time reproduces to a high precision the perturbative behavior at high momenta. The coupling is constructed in such a way that it reflects qualitatively correctly the holomorphic (analytic) behavior of spacelike observables in the complex plane of the squared momenta, as dictated by the general principles of quantum field theories. Further, we require the coupling to reproduce correctly the nonstrange semihadronic decay rate of tau lepton which is the best measured low-momentum QCD observable with small higher-twist effects. Subsequent application of the Borel sum rules to the V + A spectral functions of tau lepton decays, as measured by OPAL Collaboration, determines the values of the gluon condensate and of the V + A six-dimensional condensate, and reproduces the data to a significantly higher precision than the usual (MS) over bar running coupling.
|
|
|
Belov, I., Giachino, A., & Santopinto, E. (2025). Fully charmed tetraquark production at the LHC experiments. J. High Energy Phys., 01(1), 093–29pp.
Abstract: We develop the formalism for production of a fully heavy tetraquark and apply it to the calculation of pp -> T4c + X cross-sections. We demonstrate that the production cross-section of a fully heavy tetraquark, even if it is a diquark-antidiquark cluster, can be obtained in the meson-like basis, for which the spin-color projection technique is well established. Prompted by the recent LHCb, ATLAS and CMS data, we perform a pQCD calculation of O(alpha s5) short-distance factors in the dominant channel of gluon fusion, and match these to the four-body T4c wave functions in order to obtain the unpolarized T4c(0++, 1+-, 2++) cross-sections. The novelty in comparison with the recently published article [1] lies in the fact that we predict the absolute values as well as the d sigma/dpT spectra in the kinematic ranges accessible at the ongoing LHC experiments. From the comparison with the signal yield at LHCb we derive the constraints on the Phi <middle dot> Br(J/psi J/psi) (reduced wave function times branching) product for the T4c candidates for X(6900) and observe that X(6900) is compatible with a 2++(2S) state.
|
|