|
Balibrea-Correa, J., Lerendegui-Marco, J., Calvo, D., Caballero, L., Babiano, V., Ladarescu, I., et al. (2021). A first prototype of C6D6 total-energy detector with SiPM readout for neutron capture time-of-flight experiments. Nucl. Instrum. Methods Phys. Res. A, 985, 164709–8pp.
Abstract: Low efficiency total-energy detectors (TEDs) are one of the main tools for neutron capture cross section measurements utilizing the time-of-flight (TOF) technique. State-of-the-art TEDs are based on a C6D6 liquid-scintillation cell optically coupled to a fast photomultiplier tube. The large photomultiplier tube represents yet a significant contribution to the so-called neutron sensitivity background, which is one of the most conspicuous sources of uncertainty in this type of experiments. Here we report on the development of a first prototype of a TED based on a silicon-photomultiplier (SiPM) readout, thus resulting in a lightweight and much more compact detector. Apart from the envisaged improvement in neutron sensitivity, the new system uses low voltage (+28 V) and low current supply (-50 mA), which is more practical than the-kV supply required by conventional photomultipliers. One important difficulty hindering the earlier implementation of SiPM readout for this type of detector was the large capacitance for the output signal when all pixels of a SiPM array are summed together. The latter leads to long pulse rise and decay times, which are not suitable for time-of-flight experiments. In this work we demonstrate the feasibility of a Schottky-diode multiplexing readout approach, that allows one to preserve the excellent timing properties of SiPMs, hereby paving the way for their implementation in future neutron TOF experiments.
|
|
|
Domingo-Pardo, C. (2016). i-TED: A novel concept for high-sensitivity (n,gamma) cross-section measurements. Nucl. Instrum. Methods Phys. Res. A, 825, 78–86.
Abstract: A new method for measuring (n, gamma) cross-sections aiming at enhanced signal-to-background ratio is presented. This new approach is based on the combination of the pulse-height weighting technique with a total energy detection system that features gamma-ray imaging capability (i-TED). The latter allows one to exploit Compton imaging techniques to discriminate between true capture gamma-rays arising from the sample under study and background gamma-rays coming from contaminant neutron (prompt or delayed) captures in the surrounding environment. A general proof-of-concept detection system for this application is presented in this paper together with a description of the imaging method and a conceptual demonstration based on Monte Carlo simulations.
|
|
|
Lerendegui-Marco, J., Babiano-Suarez, V., Domingo-Pardo, C., Ladarescu, I., Tarifeno-Saldivia, A., & de la Fuente-Rosales, G. (2024). Pushing the high count rate limits of scintillation detectors for challenging neutron-capture experiments. Nucl. Instrum. Methods Phys. Res. A, 1064, 169385–13pp.
Abstract: One of the critical aspects for the accurate determination of neutron capture cross sections when combining time-of-flight and total energy detector techniques is the characterization and control of systematic uncertainties associated to the measuring devices. In this work we explore the most conspicuous effects associated to harsh count rate conditions: dead-time and pile-up effects. Both effects, when not properly treated, can lead to large systematic uncertainties and bias in the determination of neutron cross sections. In the majority of neutron capture measurements carried out at the CERN nTOF facility, the detectors of choice are the C6D6 liquid-based either in form of large-volume cells or recently commissioned sTED detector array, consisting of much smaller-volume modules. To account for the aforementioned effects, we introduce a Monte Carlo model for these detectors mimicking harsh count rate conditions similar to those happening at the CERN nTOF 20 m flight path vertical measuring station. The model parameters are extracted by comparison with the experimental data taken at the same facility during 2022 experimental campaign. We propose a novel methodology to consider both, dead-time and pile-up effects simultaneously for these fast detectors and check the applicability to experimental data from Au-197(n, gamma), including the saturated 4.9 eV resonance which is an important component of normalization for neutron cross section measurements.
|
|
|
Magan, D. L. P., Caballero, L., Domingo-Pardo, C., Agramunt-Ros, J., Albiol, F., Casanovas, A., et al. (2016). First tests of the applicability of gamma-ray imaging for background discrimination in time-of-flight neutron capture measurements. Nucl. Instrum. Methods Phys. Res. A, 823, 107–119.
Abstract: In this work we explore for the first time the applicability of using gamma-ray imaging in neutron capture measurements to identify and suppress spatially localized background. For this aim, a pinhole gamma camera is assembled, tested and characterized in terms of energy and spatial performance. It consists of a monolithic CeBr3 scintillating crystal coupled to a position-sensitive photomultiplier and readout through an integrated circuit AMIC2GR. The pinhole collimator is a massive carven block of lead. A series of dedicated measurements with calibrated sources and with a neutron beam incident on a Au-197 sample have been carried out at n_TOF, achieving an enhancement of a factor of two in the signal-to-background ratio when selecting only those events coming from the direction of the sample.
|
|