|
Fomichev, A. S., Mukha, I., Stepantsov, S. V., Grigorenko, L. V., Litvinova, E. V., Chudoba, V., et al. (2011). Lifetime of (26)S and a limit for its 2p decay energy. Int. J. Mod. Phys. E, 20(6), 1491–1508.
Abstract: The unknown isotope (26)S, expected to decay by two-proton (2p) emission, was studied theoretically and searched experimentally. The structure of this nucleus was examined within the relativistic mean field (RMF) approach. A method for taking into account the many-body structure in the three-body decay calculations was developed. The results of the RMF calculations were used as an input for the three-cluster decay model optimized for the study of a possible 2p decay branch of this nucleus. The experimental search for (26)S was performed by fragmentation of a 50.3 A MeV (32)S beam. No events of a particles table (26)S or (25)P (a presumably proton-unstable subsystem of (26)S) were observed. Based on the obtained production systematics, an upper half-life limit of T(1/2) < 79 ns was established from the time-of-flight through the fragment separator. Together with the theoretical lifetime estimates for two-proton decay, this gives a decay energy limit of Q(2p) > 640 keV for (26)S. Analogous limits for (25)P are found as T(1/2) < 38 ns and Q(p) > 110 keV. In the case that the one-proton emission is the main branch of the (26)S decay, a limit Q(2p) > 230 keV would follow for this nucleus. According to these limits, it is likely that (26)S resides in the picosecond life time range
|
|