|
Autieri, A., Cieri, L., Ferrera, G., & Sborlini, G. F. R. (2023). Combining QED and QCD transverse-momentum resummation for W and Z boson production at hadron colliders. J. High Energy Phys., 07(7), 104–30pp.
Abstract: In this article, we consider the transverse momentum (qT) distribution of W and Z bosons produced in hadronic collisions. We combine the qT resummation for QED and QCD radiation including the QED soft emissions from the W boson in the final state. In particular, we perform the resummation of enhanced logarithmic contributions due to soft and collinear emissions at next-to-leading accuracy in QED, leading-order accuracy for mixed QED-QCD and next-to-next-to-leading accuracy in QCD. In the small-qT region we consistently include in our results the next-to-next-to-leading order (i.e. two loops) QCD corrections and the next-to-leading order (i.e. one loop) electroweak corrections. The matching with the fixed-order calculation at large qT has been performed at next-to-leading order in QCD (i.e. at O(alpha(2)(S))) and at leading order in QED. We show numerical results for W and Z production at the Tevatron and the LHC. Finally, we consider the effect of combined QCD and QED resummation for the ratio of W and Z qT distributions, and we study the impact of the QED corrections providing an estimate of the corresponding perturbative uncertainties.
|
|
|
Bauer, M., Perez-Soler, J., & Shergold, J. D. (2024). Generalised hydrogen interactions with CINCO: a window to new physics. J. High Energy Phys., 10(10), 176–26pp.
Abstract: We present semi-analytic solutions for atomic transition rates in hydrogenic atoms induced by scalar, pseudoscalar, vector, axial-vector, and tensor interactions. Our results agree with quantum electrodynamics predictions to similar to 0.005 % precision, and further allow us to calculate absorption and emission rates for axions, hidden photons, light scalars or other dark matter candidates for hydrogen and hydrogenic ions. These results can be used to inform searches for light new physics as well as in calculations relevant to searches for fifth forces or varying fundamental constants, with applications from astrophysics to laboratory spectroscopy experiments. We also provide a dedicated tool for the construction of hydrogenic transition amplitudes: “Computation of hydrogen radial INtegrals and COefficients” (CINCO).
|
|
|
Calibbi, L., Lopez-Ibañez, M. L., Melis, A., & Vives, O. (2020). Muon and electron g – 2 and lepton masses in flavor models. J. High Energy Phys., 06(6), 087–23pp.
Abstract: The stringent experimental bound on μ-> e gamma is compatible with a simultaneous and sizable new physics contribution to the electron and muon anomalous magnetic moments (g – 2)(l) (l = e, mu), only if we assume a non-trivial flavor structure of the dipole operator coefficients. We propose a mechanism in which the realization of the (g – 2)(l) correction is manifestly related to the mass generation through a flavor symmetry. A radiative flavon correction to the fermion mass gives a contribution to the anomalous magnetic moment. In this framework, we introduce a chiral enhancement from a non-trivial O(1) quartic coupling of the scalar potential. We show that the muon and electron anomalies can be simultaneously explained in a vast region of the parameter space with predicted vector-like mediators of masses as large as M chi is an element of [0.6, 2.5] TeV.
|
|
|
Flores-Tlalpa, A., Lopez Castro, G., & Roig, P. (2016). Five-body leptonic decays of muon and tau lepton. J. High Energy Phys., 04(4), 185–21pp.
Abstract: We study the five-body decays u(-) -> e(-)e(+)e(-)nu u (nu) over bar (e) and tau(-) -> l(-)l'+l'-nu(tau)(nu) over bar (l) for l, l' = e, u within the Standard Model (SM) and in a general effective field theory description of the weak interactions at low energies. We compute the branching ratios and compare our results with two previous – mutually discrepan – SM calculations. By assuming a general structure for the weak currents we derive the expressions for the energy and angular distributions of the three charged leptons when the decaying lepton is polarized, which will be useful in precise tests of the weak charged current at Belle II. In these decays, leptonic T-odd correlations in triple products of spin and momenta – which may signal time reversal violation in the leptonic sector – are suppressed by the tiny neutrino masses. Therefore, a measurement of such T-violating observables would be associated to neutrinoless lepton flavor violating (LFV) decays, where this effect is not extremely suppressed. We also study the backgrounds that the SM five-lepton lepton decays constitute to searches of LFV L- -> ? l(-)l'+l'(-) decays. Searches at high values of the invariant mass of the l'(+)l'(-) pair look the most convenient way to overcome the background.
|
|
|
Han, C., Lopez-Ibañez, M. L., Melis, A., Vives, O., Wu, L., & Yang, J. M. (2020). LFV and (g-2) in non-universal SUSY models with light higgsinos. J. High Energy Phys., 05(5), 102–32pp.
Abstract: We consider a supersymmetric type-I seesaw framework with non-universal scalar masses at the GUT scale to explain the long-standing discrepancy of the anomalous magnetic moment of the muon. We find that it is difficult to accommodate the muon g-2 while keeping charged-lepton flavor violating processes under control for the conventional SO(10)-based relation between the up sector and neutrino sector. However, such tension can be relaxed by adding a Georgi-Jarlskog factor for the Yukawa matrices, which requires a non-trivial GUT-based model. In this model, we find that both observables are compatible for small mixings, CKM-like, in the neutrino Dirac Yukawa matrix.
|
|