|
Babiano, V., Balibrea, J., Caballero, L., Calvo, D., Ladarescu, I., Mira Prats, S., et al. (2020). First i-TED demonstrator: A Compton imager with Dynamic Electronic Collimation. Nucl. Instrum. Methods Phys. Res. A, 953, 163228–9pp.
Abstract: i-TED consists of both a total energy detector and a Compton camera primarily intended for the measurement of neutron capture cross sections by means of the simultaneous combination of neutron time-of-flight (TOF) and gamma-ray imaging techniques. TOF allows one to obtain a neutron-energy differential capture yield, whereas the imaging capability is intended for the discrimination of radiative background sources, that have a spatial origin different from that of the capture sample under investigation. A distinctive feature of i-TED is the embedded Dynamic Electronic Collimation (DEC) concept, which allows for a trade-off between efficiency and image resolution. Here we report on some general design considerations and first performance characterization measurements made with an i-TED demonstrator in order to explore its gamma-ray detection and imaging capabilities.
|
|
|
Babiano, V., Caballero, L., Calvo, D., Ladarescu, I., Olleros, P., & Domingo-Pardo, C. (2019). gamma-Ray position reconstruction in large monolithic LaCl3(Ce) crystals with SiPM readout. Nucl. Instrum. Methods Phys. Res. A, 931, 1–22.
Abstract: We report on the spatial response characterization of large LaCl3(Ce) monolithic crystals optically coupled to 8 x 8 pixel silicon photomultiplier (SiPM) sensors. A systematic study has been carried out for 511 keV gamma-rays using three different crystal thicknesses of 10 mm, 20 mm and 30 mm, all of them with planar geometry and a base size of 50 x 50 mm(2). In this work we investigate and compare two different approaches for the determination of the main gamma-ray hit location. On one hand, methods based on the fit of an analytical model for the scintillation light distribution provide the best results in terms of linearity and field of view, with spatial resolutions close to similar to 1 mm FWHM. On the other hand, position reconstruction techniques based on neural networks provide similar linearity and field-of-view, becoming the attainable spatial resolution similar to 3 mm FWHM. For the third space coordinate z or depth-of-interaction we have implemented an inverse linear calibration approach based on the cross-section of the measured scintillation-light distribution at a certain height. The detectors characterized in this work are intended for the development of so-called Total Energy Detectors with Compton imaging capability (i-TED), aimed at enhanced sensitivity and selectivity measurements of neutron capture cross sections via the time-of-flight (TOF) technique.
|
|