|
Babiano, V., Balibrea, J., Caballero, L., Calvo, D., Ladarescu, I., Mira Prats, S., et al. (2020). First i-TED demonstrator: A Compton imager with Dynamic Electronic Collimation. Nucl. Instrum. Methods Phys. Res. A, 953, 163228–9pp.
Abstract: i-TED consists of both a total energy detector and a Compton camera primarily intended for the measurement of neutron capture cross sections by means of the simultaneous combination of neutron time-of-flight (TOF) and gamma-ray imaging techniques. TOF allows one to obtain a neutron-energy differential capture yield, whereas the imaging capability is intended for the discrimination of radiative background sources, that have a spatial origin different from that of the capture sample under investigation. A distinctive feature of i-TED is the embedded Dynamic Electronic Collimation (DEC) concept, which allows for a trade-off between efficiency and image resolution. Here we report on some general design considerations and first performance characterization measurements made with an i-TED demonstrator in order to explore its gamma-ray detection and imaging capabilities.
|
|
|
Babiano, V., Caballero, L., Calvo, D., Ladarescu, I., Olleros, P., & Domingo-Pardo, C. (2019). gamma-Ray position reconstruction in large monolithic LaCl3(Ce) crystals with SiPM readout. Nucl. Instrum. Methods Phys. Res. A, 931, 1–22.
Abstract: We report on the spatial response characterization of large LaCl3(Ce) monolithic crystals optically coupled to 8 x 8 pixel silicon photomultiplier (SiPM) sensors. A systematic study has been carried out for 511 keV gamma-rays using three different crystal thicknesses of 10 mm, 20 mm and 30 mm, all of them with planar geometry and a base size of 50 x 50 mm(2). In this work we investigate and compare two different approaches for the determination of the main gamma-ray hit location. On one hand, methods based on the fit of an analytical model for the scintillation light distribution provide the best results in terms of linearity and field of view, with spatial resolutions close to similar to 1 mm FWHM. On the other hand, position reconstruction techniques based on neural networks provide similar linearity and field-of-view, becoming the attainable spatial resolution similar to 3 mm FWHM. For the third space coordinate z or depth-of-interaction we have implemented an inverse linear calibration approach based on the cross-section of the measured scintillation-light distribution at a certain height. The detectors characterized in this work are intended for the development of so-called Total Energy Detectors with Compton imaging capability (i-TED), aimed at enhanced sensitivity and selectivity measurements of neutron capture cross sections via the time-of-flight (TOF) technique.
|
|
|
Lerendegui-Marco, J., Cisterna, G., Hallam, J., Babiano-Suarez, V., Balibrea-Correa, J., Calvo, D., et al. (2025). Imaging neutrons with a position-sensitive monolithic CLYC detector. Nucl. Instrum. Methods Phys. Res. A, 1079, 170594–12pp.
Abstract: In this work, we have developed and characterized a position-sensitive CLYC detector that acts as the neutron imaging layer and y-ray Compton scatterer of the novel dual Gamma-ray and Neutron Vision (GN-Vision) system, which aims at simultaneously obtaining information about the spatial origin of y-ray and neutron sources. We first investigated the performance of two large 50 x 50 mm2 monolithic CLYC crystals, 8 and 13 mm thick respectively, coupled to a pixelated SiPM in terms of energy resolution and neutron-gamma discrimination. The response of two different 95% 6Li-enriched CLYC detectors coupled to an array of 8 x 8 SiPMs was studied in comparison to the results of a conventional photo-multiplier tube. An energy resolution of about 6% with PMT and 8% with SiPMs for the 137Cs peak and a figure of merit of 3-4 for the neutron-gamma discrimination have been obtained. The spatial response of the CLYC-SiPM detector to y-rays and neutrons has also been characterized using charge modulation-based multiplexing techniques based on a diode-coupled charge division circuit. Average resolutions close to 5 mm FWHM with good linearity are obtained in the transverse crystal plane. Last, this work presents the first proof-of-concept experiments of the neutron imaging capability using a neutron pinhole collimator attached to the developed position sensitive CLYC detector.
|
|