|
Guadilla, V. et al, Algora, A., Tain, J. L., Agramunt, J., Jordan, D., Monserrate, M., et al. (2017). Characterization of a cylindrical plastic beta-detector with Monte Carlo simulations of optical photons. Nucl. Instrum. Methods Phys. Res. A, 854, 134–138.
Abstract: In this work we report on the Monte Carlo study performed to understand and reproduce experimental measurements of a new plastic beta-detector with cylindrical geometry. Since energy deposition simulations differ from the experimental measurements for such a geometry, we show how the simulation of production and transport of optical photons does allow one to obtain the shapes of the experimental spectra. Moreover, taking into account the computational effort associated with this kind of simulation, we develop a method to convert the simulations of energy deposited into light collected, depending only on the interaction point in the detector. This method represents a useful solution when extensive simulations have to be done, as in the case of the calculation of the response function of the spectrometer in a total absorption gamma-ray spectroscopy analysis.
|
|
NEMO-3 Collaboration(Argyriades, J. et al), Diaz, J., Martin-Albo, J., Monrabal, F., Novella, P., Serra, L., et al. (2011). Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors. Nucl. Instrum. Methods Phys. Res. A, 625(1), 20–28.
Abstract: We have constructed a GEANT4-based detailed software model of photon transport in plastic sontillator blocks and have used it to study the NEMO-3 and SuperNEMO calorimeters employed in experiments designed to search for neutnnoless double beta decay We compare our simulations to measurements using conversion electrons from a calibration source of (BI)-B-207 and show that the agreement is improved if wavelength-dependent properties of the calorimeter are taken into account In this article we briefly describe our modeling approach and results of our studies.
|