|
ANTARES Collaboration(Ageron, M. et al), Aguilar, J. A., Bigongiari, C., Carmona, E., Dornic, D., Emanuele, U., et al. (2011). ANTARES: The first undersea neutrino telescope. Nucl. Instrum. Methods Phys. Res. A, 656(1), 11–38.
Abstract: The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.
|
|
|
ANTARES Collaboration(Aguilar, J. A. et al), Bigongiari, C., Dornic, D., Emanuele, U., Gomez-Gonzalez, J. P., Hernandez-Rey, J. J., et al. (2010). Performance of the front-end electronics of the ANTARES neutrino telescope. Nucl. Instrum. Methods Phys. Res. A, 622(1), 59–73.
Abstract: ANTARES is a high-energy neutrino telescope installed in the Mediterranean Sea at a depth of 2475 m. It consists of a three-dimensional array of optical modules, each containing a large photomultiplier tube. A total of 2700 front-end ASICs named analogue ring samplers (ARS) process the phototube signals, measure their arrival time, amplitude and shape as well as perform monitoring and calibration tasks. The ARS chip processes the analogue signals from the optical modules and converts information into digital data. All the information is transmitted to shore through further multiplexing electronics and an optical link. This paper describes the performance of the ARS chip: results from the functionality and characterization tests in the laboratory are summarized and the long-term performance in the apparatus is illustrated.
|
|
|
Luo, X. L. et al, Agramunt, J., Egea, F. J., Gadea, A., & Huyuk, T. (2014). Test of digital neutron-gamma discrimination with four different photomultiplier tubes for the NEutron Detector Array (NEDA). Nucl. Instrum. Methods Phys. Res. A, 767, 83–91.
Abstract: A comparative study of the neutron-gamma discrimination performance of a liquid scintillator detector BC501A coupled to four different 5 in photomultiplier tubes (ET9390kb, R11833-100, XP4512 and R4144) was carried out Both the Charge Comparison method and the Integrated Rise-Time method were implemented digitally to discriminate between neutrons and gamma rays emitted by a Cf-252 source. In both methods, the neutron-gamma discrimination capabilities of the four photomultiplier tubes were quantitatively compared by evaluating their figure-of-merit values at different energy regions between 50 keVee and 1000 keVee. Additionally, the results were further verified qualitatively using time-of-flight to distinguish gamma rays and neutrons. The results consistently show that photomultiplier tubes R11833-100 and ET9390kb generally perform best regarding neutron-gamma discrimination with only slight differences in figure-of-merit values. This superiority can be explained by their relatively higher photoelectron yield, which indicates that a scintillator detector coupled to a photomultiplier tube with higher photoelectron yield tends to result in better neutron-gamma discrimination performance. The results of this work will provide reference for the choice of photomultiplier tubes for future neutron detector arrays like NEDA.
|
|
|
Martin-Luna, P., Esperante, D., Casaña, J. V., Fernandez Prieto, A., Fuster-Martinez, N., Rivas, I. G., et al. (2025). Effects of the passive voltage divider in a photomultiplier tube: Analytical model, simulations and experimental validation. Sens. Actuator A-Phys., 381, 116057–11pp.
Abstract: The effects of the passive resistive voltage divider network in a photomultiplier tube (PMT) have been investigated by developing an in-house Monte Carlo simulation code and compared with experimental measurements and an analytical model. The simulation code follows an iterative procedure that takes into account the transport and amplification of the electrons within the device depending on the electrostatic fields produced by the electrode voltages. The PMT gain, dynode voltages, rise time and transit time have been studied as a function of the photocathode current and supply voltage. A good agreement between the analytical model, the simulations and numerous experimental measurements using a Hamamatsu R13408-100 PMT has been obtained. The simulation results endorse the use of logistic functions within the analytical model to account for the collection efficiency in the last dynode stages. This works deepens the understanding of passive voltage dividers and develops an advanced behavioral circuit model of photomultiplier tubes. Although validated fora single PMT, the proposed methodology is applicable to any PMT model. This aids in optimizing the design of fully active voltage dividers, to be applied in extremely pulsed applications with high count rates such as prompt gamma-ray imaging during proton therapy.
|
|
|
Martin-Luna, P., Esperante, D., Prieto, A. F., Fuster-Martinez, N., Rivas, I. G., Gimeno, B., et al. (2024). Simulation of electron transport and secondary emission in a photomultiplier tube and validation. Sens. Actuator A-Phys., 365, 114859–10pp.
Abstract: The electron amplification and transport within a photomultiplier tube (PMT) has been investigated by developing an in-house Monte Carlo simulation code. The secondary electron emission in the dynodes is implemented via an effective electron model and the Modified Vaughan's model, whereas the transport is computed with the Boris leapfrog algorithm. The PMT gain, rise time and transit time have been studied as a function of supply voltage and external magnetostatic field. A good agreement with experimental measurements using a Hamamatsu R13408-100 PMT was obtained. The simulations have been conducted following different treatments of the underlying geometry: three-dimensional, two-dimensional and intermediate (2.5D). The validity of these approaches is compared. The developed framework will help in understanding the behavior of PMTs under highly intense and irregular illumination or varying external magnetic fields, as in the case of prompt gamma-ray measurements during pencil-beam proton therapy; and aid in optimizing the design of voltage dividers with behavioral circuit models.
|
|