|
Ardu, M., Hossain Rahat, M., Valori, N., & Vives, O. (2024). Electric Dipole Moments as indirect probes of dark sectors. J. High Energy Phys., 11(11), 049–25pp.
Abstract: Dark sectors provide beyond Standard Model scenarios which can address unresolved puzzles, such as the observed dark matter abundance or the baryon asymmetry of the Universe. A naturally small portal to the dark sector is obtained if dark-sector interactions stem from a non-Abelian hidden gauge group that couples through kinetic mixing with the hypercharge boson. In this work, we investigate the phenomenology of such a portal of dimension five in the presence of CP violation, focusing on its signatures in fermion electric dipole moments. We show that, currently unbounded regions of the parameter space from dark photon searches can be indirectly probed with upcoming electron dipole moment experiments for dark boson masses in the range 1 – 100 GeV. We also discuss two particular scenarios where a SU(2)D dark gauge group spontaneously breaks into either an Abelian U(1)D or nothing. In both cases, we show that potentially observable electron dipole moments can be produced in vast regions of the parameter space compatible with current experimental constraints and observed dark matter abundance.
|
|
|
Bas i Beneito, A., Herrero-Garcia, J., & Vatsyayan, D. (2022). Multi-component dark sectors: symmetries, asymmetries and conversions. J. High Energy Phys., 10(10), 075–31pp.
Abstract: We study the relic abundance of several stable particles from a generic dark sector, including the possible presence of dark asymmetries. After discussing the different possibilities for stabilising multi-component dark matter, we analyse the final relic abundance of the symmetric and asymmetric dark matter components, paying special attention to the role of the unavoidable conversions between dark matter states. We find an exponential dependence of the asymmetries of the heavier components on annihilations and conversions. We conclude that having similar symmetric and asymmetric components is a natural outcome in many scenarios of multi-component dark matter. This has novel phenomenological implications, which we briefly discuss.
|
|
|
Bauer, M., Perez-Soler, J., & Shergold, J. D. (2024). Generalised hydrogen interactions with CINCO: a window to new physics. J. High Energy Phys., 10(10), 176–26pp.
Abstract: We present semi-analytic solutions for atomic transition rates in hydrogenic atoms induced by scalar, pseudoscalar, vector, axial-vector, and tensor interactions. Our results agree with quantum electrodynamics predictions to similar to 0.005 % precision, and further allow us to calculate absorption and emission rates for axions, hidden photons, light scalars or other dark matter candidates for hydrogen and hydrogenic ions. These results can be used to inform searches for light new physics as well as in calculations relevant to searches for fifth forces or varying fundamental constants, with applications from astrophysics to laboratory spectroscopy experiments. We also provide a dedicated tool for the construction of hydrogenic transition amplitudes: “Computation of hydrogen radial INtegrals and COefficients” (CINCO).
|
|
|
Centelles Chulia, S., Cepedello, R., & Medina, O. (2022). Absolute neutrino mass scale and dark matter stability from flavour symmetry. J. High Energy Phys., 10(10), 080–23pp.
Abstract: We explore a simple but extremely predictive extension of the scotogenic model. We promote the scotogenic symmetry Z(2) to the flavour non-Abelian symmetry sigma(81), which can also automatically protect dark matter stability. In addition, sigma(81) leads to striking predictions in the lepton sector: only Inverted Ordering is realised, the absolute neutrino mass scale is predicted to be m(lightest)approximate to 7.5x10(-4) eV and the Majorana phases are correlated in such a way that vertical bar m(ee)vertical bar approximate to 0.018 eV. The model also leads to a strong correlation between the solar mixing angle theta(12) and delta(CP), which may be falsified by the next generation of neutrino oscillation experiments. The setup is minimal in the sense that no additional symmetries or flavons are required.
|
|
|
Coito, L., Faubel, C., Herrero-Garcia, J., Santamaria, A., & Titov, A. (2022). Sterile neutrino portals to Majorana dark matter: effective operators and UV completions. J. High Energy Phys., 08(8), 085–36pp.
Abstract: Stringent constraints on the interactions of dark matter with the Standard Model suggest that dark matter does not take part in gauge interactions. In this regard, the possibility of communicating between the visible and dark sectors via gauge singlets seems rather natural. We consider a framework where the dark matter talks to the Standard Model through its coupling to sterile neutrinos, which generate active neutrino masses. We focus on the case of Majorana dark matter, with its relic abundance set by thermal freeze-out through annihilations into sterile neutrinos. We use an effective field theory approach to study the possible sterile neutrino portals to dark matter. We find that both lepton-number-conserving and lepton-number-violating operators are possible, yielding an interesting connection with the Dirac/Majorana character of active neutrinos. In a second step, we open the different operators and outline the possible renormalisable models. We analyse the phenomenology of the most promising ones, including a particular case in which the Majorana mass of the sterile neutrinos is generated radiatively.
|
|