|
Brzezinski, K., Oliver, J. F., Gillam, J., Rafecas, M., Studen, A., Grkovski, M., et al. (2016). Experimental evaluation of the resolution improvement provided by a silicon PET probe. J. Instrum., 11, P09016–13pp.
Abstract: A high-resolution PET system, which incorporates a silicon detector probe into a conventional PET scanner, has been proposed to obtain increased image quality in a limited region of interest. Detailed simulation studies have previously shown that the additional probe information improves the spatial resolution of the reconstructed image and increases lesion detectability, with no cost to other image quality measures. The current study expands on the previous work by using a laboratory prototype of the silicon PET-probe system to examine the resolution improvement in an experimental setting. Two different versions of the probe prototype were assessed, both consisting of a back-to-back pair of 1-mm thick silicon pad detectors, one arranged in 32 x 16 arrays of 1.4mm x 1.4mm pixels and the other in 40 x 26 arrays of 1.0mm x 1.0mm pixels. Each detector was read out by a set of VATAGP7 ASICs and a custom-designed data acquisition board which allowed trigger and data interfacing with the PET scanner, itself consisting of BGO block detectors segmented into 8 x 6 arrays of 6mm x 12mm x 30mm crystals. Limited-angle probe data was acquired from a group of Na-22 point-like sources in order to observe the maximum resolution achievable using the probe system. Data from a Derenzo-like resolution phantom was acquired, then scaled to obtain similar statistical quality as that of previous simulation studies. In this case, images were reconstructed using measurements of the PET ring alone and with the inclusion of the probe data. Images of the Na-22 source demonstrated a resolution of 1.5mm FWHM in the probe data, the PET ring resolution being approximately 6 mm. Profiles taken through the image of the Derenzo-like phantom showed a clear increase in spatial resolution. Improvements in peak-to-valley ratios of 50% and 38%, in the 4.8mm and 4.0mm phantom features respectively, were observed, while previously unresolvable 3.2mm features were brought to light by the addition of the probe. These results support the possibility of improving the image resolution of a clinical PET scanner using the silicon PET-probe.
|
|
Gomez-Cadenas, J. J., Benlloch-Rodriguez, J. M., & Ferrario, P. (2017). Monte Carlo study of the coincidence resolving time of a liquid xenon PET scanner, using Cherenkov radiation. J. Instrum., 12, P08023–13pp.
Abstract: In this paper we use detailed Monte Carlo simulations to demonstrate that liquid xenon (LXe) can be used to build a Cherenkov-based TOF-PET, with an intrinsic coincidence resolving time (CRT) in the vicinity of 10 ps. This extraordinary performance is due to three facts: a) the abundant emission of Cherenkov photons by liquid xenon; b) the fact that LXe is transparent to Cherenkov light; and c) the fact that the fastest photons in LXe have wavelengths higher than 300 nm, therefore making it possible to separate the detection of scintillation and Cherenkov light. The CRT in a Cherenkov LXe TOF-PET detector is, therefore, dominated by the resolution (time jitter) introduced by the photosensors and the electronics. However, we show that for sufficiently fast photosensors (e.g, an overall 40 ps jitter, which can be achieved by current micro-channel plate photomultipliers) the overall CRT varies between 30 and 55 ps, depending on the detection efficiency. This is still one order of magnitude better than commercial CRT devices and improves by a factor 3 the best CRT obtained with small laboratory prototypes.
|
|
Gomez-Cadenas, J. J., Benlloch-Rodriguez, J. M., Ferrario, P., Monrabal, F., Rodriguez, J., & Toledo, J. F. (2016). Investigation of the coincidence resolving time performance of a PET scanner based on liquid xenon: a Monte Carlo study. J. Instrum., 11, P09011–18pp.
Abstract: The measurement of the time of flight of the two 511 keV gammas recorded in coincidence in a PET scanner provides an effective way of reducing the random background and therefore increases the scanner sensitivity, provided that the coincidence resolving time (CRT) of the gammas is sufficiently good. The best commercial PET-TOF system today (based in LYSO crystals and digital SiPMs), is the VEREOS of Philips, boasting a CRT of 316 ps (FWHM). In this paper we present a Monte Carlo investigation of the CRT performance of a PET scanner exploiting the scintillating properties of liquid xenon. We find that an excellent CRT of 70 ps (depending on the PDE of the sensor) can be obtained if the scanner is instrumented with silicon photomultipliers (SiPMs) sensitive to the ultraviolet light emitted by xenon. Alternatively, a CRT of 160 ps can be obtained instrumenting the scanner with (much cheaper) blue-sensitive SiPMs coated with a suitable wavelength shifter. These results show the excellent time of flight capabilities of a PET device based in liquid xenon.
|
|
Linhart, V., Burdette, D., Chessi, E., Cindro, V., Clinthorne, N. H., Cochran, E., et al. (2011). Spectroscopy study of imaging devices based on silicon Pixel Array Detector coupled to VATAGP7 read-out chips. J. Instrum., 6, C01092–8pp.
Abstract: Spectroscopic and timing response studies have been conducted on a detector module consisting of a silicon Pixel Array Detector bonded on two VATAGP7 read-out chips manufactured by Gamma-Medica Ideas using laboratory gamma sources and the internal calibration facilities (the calibration system of the read-out chips). The performed tests have proven that the chips have (i) non-linear calibration curves which can be approximated by power functions, (ii) capability to measure the energy of photons with energy resolution better than 2 keV (exact range and resolution depend on experimental setup), (iii) the internal calibration facility which provides 6 out of 16 available internal calibration charges within our region of interest (spanning the Compton edge of 511 keV photons). The peaks induced by the internal calibration facility are suitable for a fit of the calibration curves. However, they are not suitable for measurements of equivalent noise charge because their full width at half maximum varies with their amplitude. These facts indicate that the VATAGP7 chips are useful and precise tools for a wide variety of spectroscopic devices. We have also explored time walk of the module and peaking time of the spectroscopy signals provided by the chips. We have observed that (iv) the time walk is caused partly by the peaking time of the signals provided by the fast shaper of the chips and partly by the timing uncertainty related to the varying position of the photon interaction, (v) the peaking time of the spectroscopy signals provided by the chips increases with increasing pulse height.
|
|
Renner, J. et al, Romo-Luque, C., Carrion, J. V., Diaz, J., Martinez, A., Querol, M., et al. (2022). Monte Carlo characterization of PETALO, a full-body liquid xenon-based PET detector. J. Instrum., 17(5), P05044–17pp.
Abstract: New detector approaches in Positron Emission Tomography imaging will play an important role in reducing costs, lowering administered radiation doses, and improving overall performance. PETALO employs liquid xenon as the active scintillating medium and UV-sensitive silicon photomultipliers for scintillation readout. The scintillation time in liquid xenon is fast enough to register time-of-flight information for each detected coincidence, and sufficient scintillation is produced with low enough fluctuations to obtain good energy resolution. The present simulation study examines a full-body-sized PETALO detector and evaluates its potential performance in PET image reconstruction.
|
|
Ros, A., Lerche, C. W., Sebastia, A., Sanchez, F., & Benlloch, J. M. (2014). Retroreflector arrays for better light collection efficiency of gamma-ray imaging detectors with continuous scintillation crystals without DOI misestimation. J. Instrum., 9, P04009–14pp.
Abstract: A method to improve light collection efficiency of gamma-ray imaging detectors by using retroreflector arrays has been tested, simulations of the behaviour of the scintillation light illuminating the retroreflector surface have been made. Measurements including retroreflector arrays in the setup have also been taken. For the measurements, positron emission tomography (PET) detectors with continuous scintillation crystals have been used. Each detector module consists of a continuous LSO-scintillator of dimensions 49x49x10 mm(3) and a H8500 position-sensitive photo-multiplier (PSPMT) from Hamamatsu. By using a continuous scintillation crystal, the scintillation light distribution has not been destroyed and the energy, the centroids along the x- and y-direction and the depth of interaction (DOI) can be estimated. Simulations have also been run taking into account the use of continuous scintillation crystals. Due to the geometry of the continuous scintillation crystals in comparison with pixelated crystals, a good light collection efficiency is necessary to correctly reconstruct the impact point of the gamma-ray. The aim of this study is to investigate whether micro-machine retro-reflectors improve light yield without misestimation of the impact point. The results shows an improvement on the energy and centroid resolutions without worsening the depth of interaction resolution. Therefore it can be concluded that using retroreflector arrays at the entrance side of the scintillation crystal improves light collection efficiency without worsening the impact point estimation.
|