|
Perez-Calatayud, J., Ballester, F., Tedgren, C., DeWerd, L. A., Papagiannis, P., Rivard, M. J., et al. (2022). GEC-ESTRO ACROP recommendations on calibration and traceability of HE HDR-PDR photon-emitting brachytherapy sources at the hospital level. Radiother. Oncol., 176, 108–117.
Abstract: The vast majority of radiotherapy departments in Europe using brachytherapy (BT) perform temporary implants of high-or pulsed-dose rate (HDR-PDR) sources with photon energies higher than 50 keV. Such techniques are successfully applied to diverse pathologies and clinical scenarios. These recommen-dations are the result of Working Package 21 (WP-21) initiated within the BRAchytherapy PHYsics Quality Assurance System (BRAPHYQS) GEC-ESTRO working group with a focus on HDR-PDR source cal-ibration. They provide guidance on the calibration of such sources, including practical aspects and issues not specifically accounted for in well-accepted societal recommendations, complementing the BRAPHYQS WP-18 Report dedicated to low energy BT photon emitting sources (seeds). The aim of this report is to provide a European-wide standard in HDR-PDR BT source calibration at the hospital level to maintain high quality patient treatments.
|
|
|
Vijande, J., Tedgren, A. C., Ballester, F., Baltas, D., Papagiannis, P., Rivard, M. J., et al. (2021). Source strength determination in iridium-192 and cobalt-60 brachytherapy: A European survey on the level of agreement between clinical measurements and manufacturer certificates. Phys. Imag. Radiat. Oncol., 19, 108–111.
Abstract: Background and purpose: Brachytherapy treatment outcomes depend on the accuracy of the delivered dose distribution, which is proportional to the reference air-kerma rate (RAKR). Current societal recommendations require the medical physicist to compare the measured RAKR values to the manufacturer source calibration certificate. The purpose of this work was to report agreement observed in current clinical practice in the European Union. Materials and methods: A European survey was performed for high- and pulsed-dose-rate (HDR and PDR) highenergy sources (Ir-192 and Co-60), to quantify observed RAKR differences. Medical physicists at eighteen hospitals from eight European countries were contacted, providing 1,032 data points from 2001 to 2020. Results: Over the survey period, 77% of the Ir-192 measurements used a well chamber instead of the older Krieger phantom method. Mean differences with the manufacturer calibration certificate were 0.01% +/- 1.15% for Ir-192 and -0.1% +/- 1.3% for Co-60. Over 95% of RAKR measurements in the clinic were within 3% of the manufacturer calibration certificate. Conclusions: This study showed that the agreement level was generally better than that reflected in prior societal recommendations positing 5%. Future recommendations on high-energy HDR and PDR source calibrations in the clinic may consider tightened agreements levels.
|
|