| 
		
		
	 | 
	
		Barenboim, G., Gariazzo, S., & Sanchez-Vargas, A. (2025). Big Bang Nucleosynthesis as a probe of non-standard neutrino interactions and non-unitary three-neutrino mixing. J. Cosmol. Astropart. Phys., 08(8), 005–25pp.
		
			 
		 
		
			Abstract: In this work we investigate the impact of two phenomenological Beyond the Standard Model (BSM) scenarios concerning the role of neutrinos in the early universe: nonstandard neutrino interactions (NSI) and non-unitary three-neutrino mixing. We evaluate the impact of these frameworks on two key cosmological observables: the effective number of relativistic neutrino species (Neff), related to neutrino decoupling, and the abundances of light elements produced at Big Bang Nucleosynthesis (BBN). For the first time, neutrino CC-NSI with quarks and non-unitary three-neutrino mixing are studied in the context of BBN, and the constraints on such interactions are found to be remarkably restrictive. In particular, the BBN limits are competitive with the ones derived from terrestrial experiments for the non-diagonal CC-NSI parameter epsilon udV e alpha , with alpha not equal e and for the non-unitarity parameter alpha 22. In the case of non-unitarity, the combination between neutrino decoupling and BBN imposes stringent constraints that can either mildly favour the existence of New Physics (NP), or reinforce the SM, depending on the choice of the experimental nuclear rates involved in the BBN calculation. These results stress the already noted need for further nuclear rates measurements in order to obtain more robust BBN theoretical predictions. 
			
			
		 
	 | 
	
		   
		 
		
	 | 
	| 
		
		
	 | 
	
		Consiglio, R., de Salas, P. F., Mangano, G., Miele, G., Pastor, S., & Pisanti, O. (2018). PArthENoPE reloaded. Comput. Phys. Commun., 233, 237–242.
		
			 
		 
		
			Abstract: We describe the main features of a new and updated version of the program PArthENoPE, which computes the abundances of light elements produced during Big Bang Nucleosynthesis. As the previous first release in 2008, the new one, PArthENoPE2.0, is publicly available and distributed from the code site, http://parthenope.na.infn.it . Apart from minor changes, which will be also detailed, the main improvements are as follows. The powerful, but not freely accessible, NAG routines have been substituted by ODEPACK libraries, without any significant loss in precision. Moreover, we have developed a Graphical User Interface (GUI) which allows a friendly use of the code and a simpler implementation of running for grids of input parameters. New Version program summary Program Title: PArthENoPE2.0 Program Files doi : http://dx.doi.org/10.17632/wvgr7d8yt9.1 Licensing provisions: GPLv3 Programming language: Fortran 77 and Python Supplementary material: User Manual available on the web page http://parthenope.na.infn.it Journal reference of previous version: Comput. Phys. Commun. 178 (2008) 956 971 Does the new version supersede the previous version?: Yes Reasons for the new version: Make the code more versatile and user friendly Summary of revisions: (1) Publicly available libraries (2) GUI for configuration Nature of problem: Computation of yields of light elements synthesized in the primordial universe Solution method: Livermore Solver for Ordinary Differential Equations (LSODE) for stiff and nonstiff systems 
			
			
		 
	 | 
	
		   
		 
		
	 | 
	| 
		
		
	 | 
	
		de Salas, P. F., Gariazzo, S., Laveder, M., Pastor, S., Pisanti, O., & Truong, N. (2018). Cosmological bounds on neutrino statistics. J. Cosmol. Astropart. Phys., 03(3), 050–18pp.
		
		
			Abstract: We consider the phenomenological implications of the violation of the Pauli exclusion principle for neutrinos, focusing on cosmological observables such as the spectrum of Cosmic Microwave Background anisotropies, Baryon Acoustic Oscillations and the primordial abundances of light elements. Neutrinos that behave (at least partly) as bosonic particles have a modified equilibrium distribution function that implies a different influence on the evolution of the Universe that, in the case of massive neutrinos, can not be simply parametrized by a change in the effective number of neutrinos. Our results show that, despite the precision of the available cosmological data, only very weak bounds can be obtained on neutrino statistics, disfavouring a more bosonic behaviour at less than 2 sigma. 
			
			
		 
	 | 
	
		   
		 
		
	 | 
	| 
		
		
	 | 
	
		Gariazzo, S., de Salas, P. F., Pisanti, O., & Consiglio, R. (2022). PArthENoPE revolutions. Comput. Phys. Commun., 271, 108205–13pp.
		
			 
		 
		
			Abstract: This paper presents the main features of a new and updated version of the program PArthENoPE, which the community has been using for many years for computing the abundances of light elements produced during Big Bang Nucleosynthesis. This is the third release of the PArthENoPE code, after the 2008 and the 2018 ones, and will be distributed from the code's website, http://parthenope.na.infn.it. Apart from minor changes, the main improvements in this new version include a revisited implementation of the nuclear rates for the most important reactions of deuterium destruction, H-2(p,gamma) He-3, H-2(d, n)He-3 and H-2(d, p)H-3, and a re-designed GUI, which extends the functionality of the previous one. The new GUI, in particular, supersedes the previous tools for running over grids of parameters with a better management of parallel runs, and it offers a brand-new set of functions for plotting the results. Program summary Program title: PArthENoPE 3.0 CPC Library link to program files: https://doi.org/10.17632/wygr7d8yt9.2 Developer's repository link: http://parthenope.na.infn.it Licensing provisions: GPLv3 Programming language: Fortran 77 and Python Nature of problem: Computation of yields of light elements synthesized in the primordial universe Solution method: Livermore Solver for Ordinary Differential Equations (LSODE) for stiff and nonstiff systems, Python GUI for running and plotting Journal reference of previous version: Comput. Phys. Commun. 233 (2018) 237-242 Does the new version supersede the previous version?: Yes Reasons for the new version: Update of the physics and improvements in the GUI Summary of revisions: Update of the physics implemented in the Fortran code and improvements in the GUI functionalities, in particular new plotting functions. 
			
			
		 
	 | 
	
		   
		 
		
	 | 
	| 
		
		
	 | 
	
		Guerrero, C., Tessler, M., Paul, M., Lerendegui-Marco, J., Heinitz, S., Maugeri, E. A., et al. (2019). The s-process in the Nd-Pm-Sm region: Neutron activation of Pm-147. Phys. Lett. B, 797, 134809–6pp.
		
			 
		 
		
			Abstract: The Nd-Pm-Sm branching is of interest for the study of the s-process, related to the production of heavy elements in stars. As Sm-148 and Sm-150 are s-only isotopes, the understanding of the branching allows constraining the s-process neutron density. In this context the key physics input needed is the cross section of the three unstable nuclides in the region: Nd-147 (10.98 d half-life), Pm-147 (2.62 yr) and Pm-148 (5.37 d). This paper reports on the activation measurement of Pm-147, the longest-lived of the three nuclides. The cross section measurement has been carried out by activation at the SARAF LiLiT facility using a 56(2) μg target. Compared to the single previous measurement of Pm-147, the measurement presented herein benefits from a target 2000 times more massive. The resulting Maxwellian Averaged Cross Section (MACS) to the ground and metastable states in Pm-148 are 469(50) mb and 357(27) mb. These values are 41% higher (to the ground state) and 15% lower (to the metastable state) than the values reported so far, leading however to a total cross section of 826(107) mb consistent within uncertainties with the previous result and hence leaving unchanged the previous calculation of the s-process neutron density. 
			
			
		 
	 | 
	
		   
		 
		
	 |