|
Lerendegui-Marco, J., Babiano-Suarez, V., Balibrea-Correa, J., Caballero, L., Calvo, D., Ladarescu, I., et al. (2024). Simultaneous Gamma-Neutron Vision device: a portable and versatile tool for nuclear inspections. EPJ Tech. Instrum., 11(1), 2–17pp.
Abstract: This work presents GN-Vision, a novel dual gamma-ray and neutron imaging system, which aims at simultaneously obtaining information about the spatial origin of gamma-ray and neutron sources. The proposed device is based on two position sensitive detection planes and exploits the Compton imaging technique for the imaging of gamma-rays. In addition, spatial distributions of slow- and thermal-neutron sources (<100 eV) are reconstructed by using a passive neutron pin-hole collimator attached to the first detection plane. The proposed gamma-neutron imaging device could be of prime interest for nuclear safety and security applications. The two main advantages of this imaging system are its high efficiency and portability, making it well suited for nuclear applications were compactness and real-time imaging is important. This work presents the working principle and conceptual design of the GN-Vision system and explores, on the basis of Monte Carlo simulations, its simultaneous gamma-ray and neutron detection and imaging capabilities for a realistic scenario where a Cf-252 source is hidden in a neutron moderating container.
|
|
|
n_TOF Collaboration(Cano-Ott, D. et al), Domingo-Pardo, C., & Tain, J. L. (2011). Neutron Capture Measuremetns on Minor Actinides at the n_TOF Facility at CERN: Past, Present and Future. J. Korean Phys. Soc., 59(2), 1809–1812.
Abstract: The successful development of advanced nuclear systems for sustainable energy production and nuclear waste management depends on high quality nuclear data libraries. Recent sensitivity studies and reports [1-3] have identified the need for substantially improving the accuracy of neutron cross-section data for minor actinides. The n_TOF collaboration has initiated an ambitious experimental program for the measurement of neutron capture cross sections of minor actinides. Two experimental setups have been constructed for this purpose: a Total Absorption Calorimeter (TAC) [4] for measuring neutron capture cross-sections of low-mass and/or radioactive samples and a set of two low neutron sensitivity C(6)D(6) detectors for the less radioactive materials.
|
|