|
Broussard, L. J. et al, & Bas i Beneito, A. (2025). Baryon number violation: from nuclear matrix elements to BSM physics. J. Phys. G, 52(8), 083001–28pp.
Abstract: Processes that violate baryon number, most notably proton decay and nn(sic) transitions, are promising probes of physics beyond the Standard Model (BSM) needed to understand the lack of antimatter in the Universe. To interpret current and forthcoming experimental limits, theory input from nuclear matrix elements to UV complete models enters. Thus, an interplay of experiment, effective field theory, lattice QCD, and BSM model building is required to develop strategies to accurately extract information from current and future data and maximize the impact and sensitivity of next-generation experiments. Here, we briefly summarize the main results and discussions from the workshop 'INT-25-91W: Baryon Number Violation: From Nuclear Matrix Elements to BSM Physics,' held at the Institute for Nuclear Theory, University of Washington, Seattle, WA, 13-17 January 2025.
|
|
|
Gomez-Cadenas, J. J., Martin-Albo, J., Menendez, J., Mezzetto, M., Monrabal, F., & Sorel, M. (2024). The search for neutrinoless double-beta decay. Riv. Nuovo Cimento, 46, 619–692.
Abstract: Neutrinos are the only particles in the Standard Model that could be Majorana fermions, that is, completely neutral fermions that are their own antiparticles. The most sensitive known experimental method to verify whether neutrinos are Majorana particles is the search for neutrinoless double-beta decay. The last 2 decades have witnessed the development of a vigorous program of neutrinoless double-beta decay experiments, spanning several isotopes and developing different strategies to handle the backgrounds masking a possible signal. In addition, remarkable progress has been made in the understanding of the nuclear matrix elements of neutrinoless double-beta decay, thus reducing a substantial part of the theoretical uncertainties affecting the particle-physics interpretation of the process. On the other hand, the negative results by several experiments, combined with the hints that the neutrino mass ordering could be normal, may imply very long lifetimes for the neutrinoless double-beta decay process. In this report, we review the main aspects of such process, the recent progress on theoretical ideas and the experimental state of the art. We then consider the experimental challenges to be addressed to increase the sensitivity to detect the process in the likely case that lifetimes are much longer than currently explored, and discuss a selection of the most promising experimental efforts.
|
|