|
Bazeia, D., Losano, L., Olmo, G. J., & Rubiera-Garcia, D. (2017). Geodesically complete BTZ-type solutions of 2+1 Born-Infeld gravity. Class. Quantum Gravity, 34(4), 045006–21pp.
Abstract: We study Born-Infeld gravity coupled to a static, non-rotating electric field in 2 + 1 dimensions and find exact analytical solutions. Two families of such solutions represent geodesically complete, and hence nonsingular, spacetimes. Another family represents a point-like charge with a singularity at the center. Despite the absence of rotation, these solutions resemble the charged, rotating BTZ solution of general relativity but with a richer structure in terms of horizons. The nonsingular character of the first two families turn out to be attached to the emergence of a wormhole structure on their innermost region. This seems to be a generic prediction of extensions of general relativity formulated in metric-affine (or Palatini) spaces, where metric and connection are regarded as independent degrees of freedom.
|
|
|
Guendelman, E. I., Olmo, G. J., Rubiera-Garcia, D., & Vasihoun, M. (2013). Nonsingular electrovacuum solutions with dynamically generated cosmological constant. Phys. Lett. B, 726(4-5), 870–875.
Abstract: We consider static spherically symmetric configurations in a Palatini extension of General Relativity including R-2 and Ricci-squared terms, which is known to replace the central singularity by a wormhole in the electrovacuum case. We modify the matter sector of the theory by adding to the usual Maxwell term a nonlinear electromagnetic extension which is known to implement a confinement mechanism in flat space. One feature of the resulting theory is that the nonlinear electric field leads to a dynamically generated cosmological constant. We show that with this matter source the solutions of the model are asymptotically de Sitter and possess a wormhole topology. We discuss in some detail the conditions that guarantee the absence of singularities and of traversable wormholes.
|
|