|
Beltran, R., Cottin, G., Helo, J. C., Hirsch, M., Titov, A., & Wang, Z. S. (2023). Long-lived heavy neutral leptons from mesons in effective field theory. J. High Energy Phys., 01(1), 015–38pp.
Abstract: In the framework of the low-energy effective field theory of the Standard Model extended with heavy neutral leptons (HNLs), we calculate the production rates of HNLs from meson decays triggered by dimension-six operators. We consider both lepton number-conserving and lepton-number-violating four-fermion operators involving either a pair of HNLs or a single HNL. Assuming that HNLs are long-lived, we perform simulations and investigate the reach of the proposed far detectors at the high-luminosity LHC to (i) active-heavy neutrino mixing and (ii) the Wilson coefficients associated with the effective operators, for HNL masses below the mass of the B-meson. We further convert the latter to the associated new-physics scales. Our results show that scales in excess of hundreds of TeV and the active-heavy mixing squared as small as 10(-15 )can be probed by these experiments.
|
|
|
Beltran, R., Cottin, G., Hirsch, M., Titov, A., & Wang, Z. S. (2023). Reinterpretation of searches for long-lived particles from meson decays. J. High Energy Phys., 05(5), 031–31pp.
Abstract: Many models beyond the Standard Model predict light and feebly interacting particles that are often long-lived. These long-lived particles (LLPs) in many cases can be produced from meson decays. In this work, we propose a simple and quick reinterpretation method for models predicting LLPs produced from meson decays. With the method, we are not required to run Monte-Carlo simulation, implement detector geometries and efficiencies, or apply experimental cuts in an event analysis, as typically done in recasting and reinterpretation works. The main ingredients our method requires are only the theoretical input, allowing for computation of the production and decay rates of the LLPs. There are two conditions for the method to work: firstly, the LLPs in the models considered should be produced from a set of mesons with similar mass and lifetime (or the same meson) and second, the LLPs should, in general, have a lab-frame decay length much larger than the distance between the interaction point and the detector. As an example, we use this method to reinterpret exclusion bounds on heavy neutral leptons (HNLs) in the minimal “3+1” scenario, into those for HNLs in the general effective-field-theory framework as well as for axion-like particles. We are able to reproduce existing results, and obtain new bounds via reinterpretation of past experimental results, in particular, from CHARM and Belle.
|
|
|
Bernigaud, J., Blanke, M., de Medeiros Varzielas, I., Talbert, J., & Zurita, J. (2022). LHC signatures of tau-flavoured vector leptoquarks. J. High Energy Phys., 08(8), 127–31pp.
Abstract: We consider the phenomenological signatures of Simplified Models of Flavourful Leptoquarks, whose Beyond-the-Standard Model (SM) couplings to fermion generations occur via textures that are well motivated from a broad class of ultraviolet flavour models (which we briefly review). We place particular emphasis on the study of the vector leptoquark Delta(mu) with assignments (3, 1, 2/3) under the SM's gauge symmetry, SU(3)(C) x SU(2)(L) x U(1)(Y), which has the tantalising possibility of explaining both R-K(*) and R-D(*) anomalies. Upon performing global likelihood scans of the leptoquark's coupling parameter space, focusing in particular on models with tree-level couplings to a single charged lepton species, we then provide confidence intervals and benchmark points preferred by low(er)-energy flavour data. Finally, we use these constraints to further evaluate the (promising) Large Hadron Collider (LHC) detection prospects of pairs of tau-flavoured Delta(mu), through their distinct (a)symmetric decay channels. Namely, we consider direct third-generation leptoquark and jets plus missing-energy searches at the LHC, which we find to be complementary. Depending on the simplified model under consideration, the direct searches constrain the Delta(mu), mass up to 1500-1770 GeV when the branching fraction of Delta(mu), is entirely to third-generation quarks (but are significantly reduced with decreased branching ratios to the third generation), whereas the missing-energy searches constrain the mass up to 1150-1700 GeV while being largely insensitive to the third-generation branching fraction.
|
|
|
Candela, P. M., De Romeri, V., Melas, P., Papoulias, D. K., & Saoulidou, N. (2024). Up-scattering production of a sterile fermion at DUNE: complementarity with spallation source and direct detection experiments. J. High Energy Phys., 10(10), 032–36pp.
Abstract: We investigate the possible production of a MeV-scale sterile fermion through the up-scattering of neutrinos on nuclei and atomic electrons at different facilities. We consider a phenomenological model that adds a new fermion to the particle content of the Standard Model and we allow for all possible Lorentz-invariant non-derivative interactions (scalar, pseudoscalar, vector, axial-vector and tensor) of neutrinos with electrons and first-generation quarks. We first explore the sensitivity of the DUNE experiment to this scenario, by simulating elastic neutrino-electron scattering events in the near detector. We consider both options of a standard and a tau-optimized neutrino beams, and investigate the impact of a mobile detector that can be moved off-axis with respect to the beam. Next, we infer constraints on the typical coupling, new fermion and mediator masses from elastic neutrino-electron scattering events induced by solar neutrinos in two current dark matter direct detection experiments, XENONnT and LZ. Under the assumption that the new mediators couple also to first-generation quarks, we further set constraints on the up-scattering production of the sterile fermion using coherent elastic neutrino-nucleus scattering data from the COHERENT experiment. Moreover, we set additional constraints assuming that the sterile fermion may decay within the detector. We finally compare our results and discuss how these facilities are sensitive to different regions of the relevant parameter space due to kinematics arguments and can hence provide complementary information on the up-scattering production of a sterile fermion.
|
|
|
Carrasco, J., & Zurita, J. (2024). Emerging jet probes of strongly interacting dark sectors. J. High Energy Phys., 01(1), 034–23pp.
Abstract: A strongly interacting dark sector can give rise to a class of signatures dubbed dark showers, where in analogy to the strong sector in the Standard Model, the dark sector undergoes its own showering and hadronization, before decaying into Standard Model final states. When the typical decay lengths of the dark sector mesons are larger than a few centimeters (and no larger than a few meters) they give rise to the striking signature of emerging jets, characterized by a large multiplicity of displaced vertices.In this article we consider the general reinterpretation of the CMS search for emerging jets plus prompt jets into arbitrary new physics scenarios giving rise to emerging jets. More concretely, we consider the cases where the SM Higgs mediates between the dark sector and the SM, for several benchmark decay scenarios. Our procedure is validated employing the same model than the CMS emerging jet search. We find that emerging jets can be the leading probe in regions of parameter space, in particular when considering the so-called gluon portal and dark photon portal decay benchmarks. With the current 16.1 fb-1 of luminosity this search can exclude down to O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}(20)% exotic branching ratio of the SM Higgs, but a naive extrapolation to the 139 fb-1 luminosity employed in the current model-independent, indirect bound of 16 % would probe exotic branching ratios into dark quarks down to below 10 %. Further extrapolating these results to the HL-LHC, we find that one can pin down exotic branching ratio values of 1%, which is below the HL-LHC expectations of 2.5-4 %. We make our recasting code publicly available, as part of the LLP Recasting Repository.
|
|
|
Centelles Chulia, S., Herrero-Brocal, A., & Vicente, A. (2024). The Type-I Seesaw family. J. High Energy Phys., 07(7), 060–35pp.
Abstract: We provide a comprehensive analysis of the Type-I Seesaw family of neutrino mass models, including the conventional type-I seesaw and its low-scale variants, namely the linear and inverse seesaws. We establish that all these models essentially correspond to a particular form of the type-I seesaw in the context of explicit lepton number violation. We then focus into the more interesting scenario of spontaneous lepton number violation, systematically categorizing all inequivalent minimal models. Furthermore, we identify and flesh out specific models that feature a rich majoron phenomenology and discuss some scenarios which, despite having heavy mediators and being invisible in processes such as μ-> e gamma, predict sizable rates for decays including the majoron in the final state.
|
|
|
Coloma, P., Esteban, I., Gonzalez-Garcia, M. C., Larizgoitia, L., Monrabal, F., & Palomares-Ruiz, S. (2022). Bounds on new physics with data of the Dresden-II reactor experiment and COHERENT. J. High Energy Phys., 05(5), 037–33pp.
Abstract: Coherent elastic neutrino-nucleus scattering was first experimentally established five years ago by the COHERENT experiment using neutrinos from the spallation neutron source at Oak Ridge National Laboratory. The first evidence of observation of coherent elastic neutrino-nucleus scattering with reactor antineutrinos has now been reported by the Dresden-II reactor experiment, using a germanium detector. In this paper, we present constraints on a variety of beyond the Standard Model scenarios using the new Dresden-II data. In particular, we explore the constraints imposed on neutrino nonstandard interactions, neutrino magnetic moments, and several models with light scalar or light vector mediators. We also quantify the impact of their combination with COHERENT (CsI and Ar) data. In doing so, we highlight the synergies between spallation neutron source and nuclear reactor experiments regarding beyond the Standard Model searches, as well as the advantages of combining data obtained with different nuclear targets. We also study the possible signal from beyond the Standard Model scenarios due to elastic scattering off electrons (which would pass selection cuts of the COHERENT CsI and the Dresden-II experiments) and find more stringent constraints in certain parts of the parameter space than those obtained considering coherent elastic neutrino-nucleus scattering.
|
|
|
Coloma, P., López-Pavón, J., Molina-Bueno, L., & Urrea, S. (2024). New physics searches using ProtoDUNE and the CERN SPS accelerator. J. High Energy Phys., 01(1), 134–18pp.
Abstract: The exquisite capabilities of liquid Argon Time Projection Chambers make them ideal to search for weakly interacting particles in Beyond the Standard Model scenarios. Given their location at CERN the ProtoDUNE detectors may be exposed to a flux of such particles, produced in the collisions of 400 GeV protons (extracted from the Super Proton Synchrotron accelerator) on a target. Here we point out the interesting possibilities that such a setup offers to search for both long-lived unstable particles (Heavy Neutral Leptons, axion-like particles, etc) and stable particles (e.g. light dark matter, or millicharged particles). Our results show that, under conservative assumptions regarding the expected luminosity, this setup has the potential to improve over present bounds for some of the scenarios considered. This could be done within a short timescale, using facilities that are already in place at CERN, and without interfering with the experimental program in the North Area at CERN.
|
|
|
Cottin, G., Helo, J. C., Hirsch, M., Pena, C., Wang, C. S. A., & Xie, S. (2023). Long-lived heavy neutral leptons with a displaced shower signature at CMS. J. High Energy Phys., 02(2), 011–16pp.
Abstract: We study the LHC discovery potential in the search for heavy neutral leptons (HNL) with a new signature: a displaced shower in the CMS muon detector, giving rise to a large cluster of hits forming a displaced shower. A new Delphes module is used to model the CMS detector response for such displaced decays. We reinterpret a dedicated CMS search for neutral long-lived particles decaying in the CMS muon endcap detectors for the minimal HNL scenario. We demonstrate that this new strategy is particularly sensitive to active-sterile mixings with tau leptons, due to hadronic tau decays. HNL masses between similar to 1-6 GeV can be accessed for mixings as low as vertical bar V-tau N vertical bar(2) similar to 10(-7), probing unique regions of parameter space in the tau sector.
|
|
|
De Romeri, V., Papoulias, D. K., & Ternes, C. A. (2024). Light vector mediators at direct detection experiments. J. High Energy Phys., 05(5), 165–22pp.
Abstract: Solar neutrinos induce elastic neutrino-electron scattering in dark matter direct detection experiments, resulting in detectable event rates at current facilities. We analyze recent data from the XENONnT, LUX-ZEPLIN, and PandaX-4T experiments and we derive stringent constraints on several U(1) ' extensions of the Standard Model, accommodating new neutrino-electron interactions. We provide bounds on the relevant coupling and mass of light vector mediators for a variety of models, including the anomaly-free B – L model, lepton flavor-dependent interactions like L alpha – L beta , B – 2L e – L mu,tau , B – 3L alpha , and B + 2L μ+ 2L tau models. We compare our results with other limits obtained in the literature from both terrestrial and astrophysical experiments. Finally, we present forecasts for improving current bounds with a future experiment like DARWIN.
|
|