|
Domingo-Pardo, C. (2016). i-TED: A novel concept for high-sensitivity (n,gamma) cross-section measurements. Nucl. Instrum. Methods Phys. Res. A, 825, 78–86.
Abstract: A new method for measuring (n, gamma) cross-sections aiming at enhanced signal-to-background ratio is presented. This new approach is based on the combination of the pulse-height weighting technique with a total energy detection system that features gamma-ray imaging capability (i-TED). The latter allows one to exploit Compton imaging techniques to discriminate between true capture gamma-rays arising from the sample under study and background gamma-rays coming from contaminant neutron (prompt or delayed) captures in the surrounding environment. A general proof-of-concept detection system for this application is presented in this paper together with a description of the imaging method and a conceptual demonstration based on Monte Carlo simulations.
|
|
|
n_TOF Collaboration(Gawlik, A. et al), Domingo-Pardo, C., Tain, J. L., & Tarifeño-Saldivia, A. (2021). Radiative Neutron Capture Cross-Section Measurement of Ge Isotopes at n_TOF CERN Facility and Its Importance for Stellar Nucleosynthesis. Acta Phys. Pol. A, 139(4), 383–388.
Abstract: This manuscript summarizes the results of radiative neutron capture cross-section measurements on two stable germanium isotopes, Ge-70 and Ge-73. Experiments were performed at the n_TOF facility at CERN via the time-of-flight technique, over a wide neutron energy range, for all stable germanium isotopes (70,72,73,74, and 76). Results for Ge-70 [Phys. Rev. C 100, 045804 (2019)] and Ge-73 [Phys. Lett. B 790, 458 (2019)] are already published. In the field of nuclear structure, such measurements allow to study excited levels close to the neutron binding energy and to obtain information on nuclear properties. In stellar nucleosynthesis research, neutron induced reactions on germanium are of importance for nucleosynthesis in the weak component of the slow neutron capture processes.
|
|
|
n_TOF Collaboration(Weiss, C. et al), Domingo-Pardo, C., Tain, J. L., & Tarifeño-Saldivia, A. (2015). The new vertical neutron beam line at the CERN n_TOF facility design and outlook on the performance. Nucl. Instrum. Methods Phys. Res. A, 799, 90–98.
Abstract: At the neutron Lime-of-flight facility n_TOF at CERN a new vertical beam line was constructed in 2014, in order to extend the experimental possibilities at this facility to an even wider range of challenging cross-section measurements of interest in astrophysics, nuclear technology and medical physics. The design of the beam line and the experimental hall was based on FLUKA Monte Carlo simulations, aiming at maximizing the neutron flux, reducing the beam halo and minimizing the background from neutrons interacting with the collimator or back-scattered in the beam dump. The present paper gives an overview on the design of the beam line and the relevant elements and provides an outlook on the expected performance regarding the neutron beam intensity, shape and energy resolution, as well as the neutron and photon backgrounds.
|
|
|
Stuhl, L., Krasznahorkay, A., Csatlos, M., Algora, A., Gulyas, J., Kalinka, G., et al. (2014). A neutron spectrometer for studying giant resonances with (p,n) reactions in inverse kinematics. Nucl. Instrum. Methods Phys. Res. A, 736, 1–9.
Abstract: A neutron spectrometer, the European Low-Energy Neutron Spectrometer (ELENS), has been constructed to study exotic nuclei in inverse-kinematics experiments. The spectrometer, which consists of plastic scintillator bars, can be operated in the neutron energy range of 100 keV-10 MeV. The neutron energy is determined using the time-of-flight technique, while the position of the neutron detection is deduced from the time-difference information from photomultipliers attached to both ends of each bar. A novel wrapping method has been developed for the plastic scintillators. The array has a larger than 25% detection efficiency for neutrons of approximately 500 keV in kinetic energy and an angular resolution of less than 1 degrees. Details of the design, construction and experimental tests of the spectrometer will be presented.
|
|