|
|
Balibrea-Correa, J., Lerendegui-Marco, J., Babiano-Suarez, V., Caballero, L., Calvo, D., Ladarescu, I., et al. (2021). Machine Learning aided 3D-position reconstruction in large LaCl3 crystals. Nucl. Instrum. Methods Phys. Res. A, 1001, 165249–17pp.
Abstract: We investigate five different models to reconstruct the 3D gamma-ray hit coordinates in five large LaCl3(Ce) monolithic crystals optically coupled to pixelated silicon photomultipliers. These scintillators have a base surface of 50 x 50 mm(2) and five different thicknesses, from 10 mm to 30 mm. Four of these models are analytical prescriptions and one is based on a Convolutional Neural Network. Average resolutions close to 1-2 mm fwhm are obtained in the transverse crystal plane for crystal thicknesses between 10 mm and 20 mm using analytical models. For thicker crystals average resolutions of about 3-5 mm fwhm are obtained. Depth of interaction resolutions between 1 mm and 4 mm are achieved depending on the distance of the interaction point to the photosensor surface. We propose a Machine Learning algorithm to correct for linearity distortions and pin-cushion effects. The latter allows one to keep a large field of view of about 70%-80% of the crystal surface, regardless of crystal thickness. This work is aimed at optimizing the performance of the so-called Total Energy Detector with Compton imaging capability (i-TED) for time-of-flight neutron capture cross-section measurements.
|
|
|
|
Chiera, N. M., Maugeri, E. A., Danilov, I., Balibrea-Correa, J., Domingo-Pardo, C., Koster, U., et al. (2022). Preparation of PbSe targets for Se-79 neutron capture cross section studies. Nucl. Instrum. Methods Phys. Res. A, 1029, 166443–7pp.
Abstract: A methodology for the production of PbSe targets for Se-79 neutron capture cross section studies is presented. PbSe material was synthesized by direct reaction of its constituents at high temperature, and characterized by X-ray diffraction. Thin PbSe targets, produced for cross section experiments with the surrogate reaction method, were obtained by applying a physical vapor deposition technique, and their morphology and composition were analyzed by X-ray fluorescence, Scanning Electron Microscopy, and Energy dispersive X-ray spectroscopy. (PbSe)-Se-79 targets produced for cross section measurements with the Time of Flight method were characterized by gamma-ray spectroscopy. Finally, a procedure for the recovery of Se from PbSe is suggested. The purity of the retrieved Se was determined with Inductively Coupled Plasma Optical Emission Spectroscopy.
|
|
|
|
Domingo-Pardo, C. (2016). i-TED: A novel concept for high-sensitivity (n,gamma) cross-section measurements. Nucl. Instrum. Methods Phys. Res. A, 825, 78–86.
Abstract: A new method for measuring (n, gamma) cross-sections aiming at enhanced signal-to-background ratio is presented. This new approach is based on the combination of the pulse-height weighting technique with a total energy detection system that features gamma-ray imaging capability (i-TED). The latter allows one to exploit Compton imaging techniques to discriminate between true capture gamma-rays arising from the sample under study and background gamma-rays coming from contaminant neutron (prompt or delayed) captures in the surrounding environment. A general proof-of-concept detection system for this application is presented in this paper together with a description of the imaging method and a conceptual demonstration based on Monte Carlo simulations.
|
|
|
|
Guerrero, C., Cano-Ott, D., Mendoza, E., Tain, J. L., Algora, A., Berthoumieux, E., et al. (2012). Monte Carlo simulation of the n_TOF Total Absorption Calorimeter. Nucl. Instrum. Methods Phys. Res. A, 671, 108–117.
Abstract: The n_TOF Total Absorption Calorimeter (TAC) is a 4 pi BaF2 segmented detector used at CERN for measuring neutron capture cross-sections of importance for the design of advanced nuclear reactors. This work presents the simulation code that has been developed in GEANT4 for the accurate determination of the detection efficiency of the TAC for neutron capture events. The code allows to calculate the efficiency of the TAC for every neutron capture state, as a function of energy, crystal multiplicity, and counting rate. The code includes all instrumental effects such as the single crystal detection threshold and energy resolution, finite size of the coincidence time window, and signal pile-up. The results from the simulation have been validated with experimental data for a large set of electromagnetic de-excitation patterns: beta-decay of well known calibration sources, neutron capture reactions in light nuclei with well known level schemes like Ti-nat, reference samples used in (n,gamma) measurements like Au-197 and experimental data from an actinide sample like Pu-240. The systematic uncertainty in the determination of the detection efficiency has been estimated for all the cases. As a representative example, the accuracy reached for the case of Au-197(n,gamma) ranges between 0.5% and 2%, depending on the experimental and analysis conditions. Such a value matches the high accuracy required for the nuclear cross-section data needed in advanced reactor design.
|
|
|
|
Guerrero, C., Tessler, M., Paul, M., Lerendegui-Marco, J., Heinitz, S., Maugeri, E. A., et al. (2019). The s-process in the Nd-Pm-Sm region: Neutron activation of Pm-147. Phys. Lett. B, 797, 134809–6pp.
Abstract: The Nd-Pm-Sm branching is of interest for the study of the s-process, related to the production of heavy elements in stars. As Sm-148 and Sm-150 are s-only isotopes, the understanding of the branching allows constraining the s-process neutron density. In this context the key physics input needed is the cross section of the three unstable nuclides in the region: Nd-147 (10.98 d half-life), Pm-147 (2.62 yr) and Pm-148 (5.37 d). This paper reports on the activation measurement of Pm-147, the longest-lived of the three nuclides. The cross section measurement has been carried out by activation at the SARAF LiLiT facility using a 56(2) μg target. Compared to the single previous measurement of Pm-147, the measurement presented herein benefits from a target 2000 times more massive. The resulting Maxwellian Averaged Cross Section (MACS) to the ground and metastable states in Pm-148 are 469(50) mb and 357(27) mb. These values are 41% higher (to the ground state) and 15% lower (to the metastable state) than the values reported so far, leading however to a total cross section of 826(107) mb consistent within uncertainties with the previous result and hence leaving unchanged the previous calculation of the s-process neutron density.
|
|
|
|
Magan, D. L. P., Caballero, L., Domingo-Pardo, C., Agramunt-Ros, J., Albiol, F., Casanovas, A., et al. (2016). First tests of the applicability of gamma-ray imaging for background discrimination in time-of-flight neutron capture measurements. Nucl. Instrum. Methods Phys. Res. A, 823, 107–119.
Abstract: In this work we explore for the first time the applicability of using gamma-ray imaging in neutron capture measurements to identify and suppress spatially localized background. For this aim, a pinhole gamma camera is assembled, tested and characterized in terms of energy and spatial performance. It consists of a monolithic CeBr3 scintillating crystal coupled to a position-sensitive photomultiplier and readout through an integrated circuit AMIC2GR. The pinhole collimator is a massive carven block of lead. A series of dedicated measurements with calibrated sources and with a neutron beam incident on a Au-197 sample have been carried out at n_TOF, achieving an enhancement of a factor of two in the signal-to-background ratio when selecting only those events coming from the direction of the sample.
|
|
|
|
Mendoza, E., Alcayne, V., Cano-Ott, D., Gonzalez-Romero, E., Martinez, T., de Rada, A. P., et al. (2023). Neutron capture measurements with high efficiency detectors and the Pulse Height Weighting Technique. Nucl. Instrum. Methods Phys. Res. A, 1047, 167894–16pp.
Abstract: Neutron capture cross section measurements in time-of-flight facilities are usually performed by detecting the prompt 7-rays emitted in the capture reactions. One of the difficulties to be addressed in these measurements is that the emitted 7-rays may change with the neutron energy, and therefore also the detection efficiency. To deal with this situation, many measurements use the so called Total Energy Detection (TED) technique, usually in combination with the Pulse Height Weighting Technique (PHWT). With it, it is sought that the detection efficiency depends only on the total energy of the 7-ray cascade, which does not vary much with the neutron energy. This technique was developed in the 1960s and has been used in many neutron capture experiments to date. One of the requirements of the technique is that 7-ray detectors have a low efficiency. This has meant that the PHWT has been used with experimental setups with low detection efficiencies. However, this condition does not have to be fulfilled by the experimental system as a whole. The main goal of this work is to show that it is possible to measure with a high efficiency detection system that uses the PHWT, and how to analyze the measured data.
|
|
|
|
n_TOF Collaboration, Kappeler, F., Mengoni, A., Mosconi, M., Fujii, K., Heil, M., et al. (2011). Neutron Studies for Dating the Universe. J. Korean Phys. Soc., 59(2), 2094–2099.
Abstract: The neutron capture cross sections of (186)Os and (187)Os are of key importance for defining the 8-process abundance of (187)Os at the formation of the solar system. This quantity can be used to determine the radiogenic abundance component of (187)Os from the decay of (187)Re (t(1/2) = 41.2 Gyr) and to infer the time-duration of the nucleosynthesis in our galaxy (Re/Os cosmochronometer). The neutron capture cross sections of (186)Os, (187)Os, and (188)Os have been measured at the CERN nTOF facility from 1 eV to 1 MeV, covering the entire energy range of astrophysical interest. From these data Maxwellian averaged capture cross sections have been calculated with uncertainties between 3.3 and 4.7%. Additional information was obtained by measuring the inelastic scattering cross section of (187)Os at the Karlsruhe 3.7 MV Van de Graaff accelerator and by neutron resonance analyses of the nTOF capture data to establish a comprehensive experimental basis for the Hauser-Feshbach statistical model. Consistent I-IF calculations for the capture and inelastic reaction channels were performed to determine the stellar enhancement factors, which are required to correct the Maxwellian averaged cross sections for the effect of thermally populated excited states. The consequences of this analysis for the s-process component of the (187)Os abundance and the related impact on the evaluation of the time-duration of Galactic nucleosynthesis via the Re/Os cosmo-chronometer are discussed.
|
|
|
|
n_TOF Collaboration, Gunsing, F., Berthoumieux, E., Borella, A., Belgya, T., Szentmiklosi, L., et al. (2011). Neutron Capture on (209)Bi: Determination of the Production Ratio of (210m)Bi/(210g)Bi. J. Korean Phys. Soc., 59(2), 1670–1675.
Abstract: Neutron capture on (209)Bi produces either an isomeric state (210m)Bi with a half life of 3 x 106 years, or the ground state (210g)Bi which decays with a half life of 5 days to the alpha emitter (210)Po. Therefore the neutron capture cross section ratio (209)Bi(n,gamma)(210m)Bi/(210g)Bi plays an important role in predicting the short- and long-term radio-toxicity produced by (209)Bi under neutron irradiation. This ratio is dependent on the neutron energy. We have measured this ratio for cold neutrons at the cold neutron beam facility of the Budapest Neutron Centre by observing the population of the ground-and the metastable state using high resolution gamma-ray spectroscopy. The same technique has been used at the pulsed white neutron source GELINA of the IRMM, Geel in combination with the neutron time-of-flight technique. Results for the neutron-energy dependent branching ratio will be presented. In addition we performed simulations using a statistical decay code.
|
|
|
|
n_TOF Collaboration(Alcayne, V. et al), Babiano-Suarez, V., Caballero-Ontanaya, L., Domingo-Pardo, C., Ladarescu, I., & Tain, J. L. (2026). Measurement of the 244Cm neutron capture cross section at the n_TOF facility at CERN. Ann. Nucl. Energy, 227, 111977–14pp.
Abstract: Accurate neutron capture cross section data for minor actinides are essential for the safe and efficient management of high level radioactive waste produced during the operation of nuclear reactors. In particular, Cm-244, with a half-life of 18.11 years, dominates neutron emission in spent fuel and also contributes significantly to the decay heat and radiotoxicity. Furthermore, neutron capture on Cm-244 opens the pathway for the formation of heavier isotopes such as Bk, Cf, and other Cm isotopes. Sensitivity studies for present and future nuclear reactors have highlighted the need to reduce the uncertainties in the Cm-244 capture cross section. Experimental data on the capture cross section of this isotope are scarce due to the challenges associated with its measurements. Prior to the presented measurement and two recent measurements conducted at J-PARC, only one set of data for the Cm-244 capture cross section existed, obtained in 1969 during an underground nuclear explosion experiment. The capture cross section of Cm-244 has been measured at the nTOF facility at CERN with three different experimental setups: one at Experimental Area 1 (EAR1) using the Total Absorption Calorimeter and two measurements at Experimental Area 2 (EAR2) with C6D6 detectors, employing two different samples. The results from these three measurements were found to be compatible and then combined. In total, 17 resonances of Cm-244 were measured at nTOF below 300 eV. The radiative kernels obtained in this measurement are in good agreement with JENDL-4.0 for the majority of the resonances. Additionally, they are compatible with the recent JENDL-5 library below 50 eV, while at higher energies, the majority of radiative kernels from this evaluation based on the recent measurement by Kawase et al., are not compatible. Additionally, the Cm-244 samples also contained Pu-240. Resonances of this isotope were analyzed in the energy range between 20 and 180 eV, and the results were found to be consistent with previous measurements and evaluations, that enhances confidence in the Cm-244 results.
|
|