|
Abele, H. et al, Algora, A., Gonzalez-Alonso, M., & Novella, P. (2023). Particle physics at the European Spallation Source. Phys. Rep., 1023, 1–84.
Abstract: Presently under construction in Lund, Sweden, the European Spallation Source (ESS) will be the world's brightest neutron source. As such, it has the potential for a particle physics program with a unique reach and which is complementary to that available at other facilities. This paper describes proposed particle physics activities for the ESS. These encompass the exploitation of both the neutrons and neutrinos produced at the ESS for high precision (sensitivity) measurements (searches).
|
|
|
Addazi, A., Valle, J. W. F., & Vaquera-Araujo, C. A. (2016). String completion of an SU(3)(c) x SU(3)(L) x U(1)(X) electroweak model. Phys. Lett. B, 759, 471–478.
Abstract: The extended electroweak SU(3)(c) circle times SU(3)(L) circle times U(1)(X) symmetry framework “explaining” the number of fermion families is revisited. While 331-based schemes can not easily be unified within the conventional field theory sense, we show how to do it within an approach based on D-branes and (un)oriented open strings, on Calabi-Yau singularities. We show how the theory can be UV-completed in a quiver setup, free of gauge and string anomalies. Lepton and baryon numbers are perturbatively conserved, so neutrinos are Dirac-type, and their lightness results from a novel TeV scale seesaw mechanism. Dynamical violation of baryon number by exotic instantons could induce neutron-antineutron oscillations, with proton decay and other dangerous R-parity violating processes strictly forbidden. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.
|
|
|
AGATA Collaboration(Avigo, R. et al), Domingo-Pardo, C., Gadea, A., & Gonzalez, V. (2020). Low-lying electric dipole gamma-continuum for the unstable Fe-62(,)64 nuclei: Strength evolution with neutron number. Phys. Lett. B, 811, 135951–6pp.
Abstract: The gamma-ray emission from the nuclei Fe-62,Fe-64 following Coulomb excitation at bombarding energy of 400-440 AMeV was measured with special focus on E1 transitions in the energy region 4-8 MeV. The unstable neutron-rich nuclei Fe-62,Fe-64 were produced at the FAIR-GSI laboratories and selected with the FRS spectrometer. The gamma decay was detected with AGATA. From the measured gamma-ray spectra the summed E1 strength is extracted and compared to microscopic quasi-particle phonon model calculations. The trend of the E1 strength with increasing neutron number is found to be fairly well reproduced with calculations that assume a rather complex structure of the 1(-) states (three-phonon states) inducing a strong fragmentation of the E1 nuclear response below the neutron binding energy.
|
|
|
Agramunt, J. et al, Tain, J. L., Albiol, F., Algora, A., Domingo-Pardo, C., Jordan, M. D., et al. (2016). Characterization of a neutron-beta counting system with beta-delayed neutron emitters. Nucl. Instrum. Methods Phys. Res. A, 807, 69–78.
Abstract: A new detection system for the measurement of beta-delayed neutron emission probabilities has been characterized using fission products with well known beta-delayed neutron emission properties. The setup consists of BELEN-20, a 4 pi-neutron counter with twenty He-3 proportional tubes arranged inside a large polyethylene neutron moderator, a thin Si detector for beta counting and a self-triggering digital data acquisition system. The use of delayed-neutron precursors with different neutron emission windows allowed the study of the effect of energy dependency on neutron, beta and beta-neutron rates. The observed effect is well reproduced by Monte Carlo simulations. The impact of this dependency on the accuracy of neutron emission probabilities is discussed. A new accurate value of the neutron emission probability for the important delayed-neutron precursor I-137 was obtained, P-n = 7.76(14)%.
|
|
|
ANTARES Collaboration(Albert, A. et al), Alves, S., Calvo, D., Carretero, V., Gozzini, R., Hernandez-Rey, J. J., et al. (2023). Search for neutrino counterparts to the gravitational wave sources from LIGO/Virgo O3 run with the ANTARES detector. J. Cosmol. Astropart. Phys., 04(4), 004–19pp.
Abstract: Since 2015 the LIGO and Virgo interferometers have detected gravitational waves from almost one hundred coalescences of compact objects (black holes and neutron stars). This article presents the results of a search performed with data from the ANTARES telescope to identify neutrino counterparts to the gravitational wave sources detected during the third LIGO/Virgo observing run and reported in the catalogues GWTC-2, GWTC-2.1, and GWTC-3. This search is sensitive to all-sky neutrinos of all flavours and of energies > 100 GeV, thanks to the inclusion of both track-like events (mainly induced by v μcharged -current interactions) and shower-like events (induced by other interaction types). Neutrinos are selected if they are detected within +/- 500 s from the GW merger and with a reconstructed direction compatible with its sky localisation. No significant excess is found for any of the 80 analysed GW events, and upper limits on the neutrino emission are derived. Using the information from the GW catalogues and assuming isotropic emission, upper limits on the total energy Etot,v emitted as neutrinos of all flavours and on the ratio fv = Etot,v/EGW between neutrino and GW emissions are also computed. Finally, a stacked analysis of all the 72 binary black hole mergers (respectively the 7 neutron star-black hole merger candidates) has been performed to constrain the typical neutrino emission within this population, leading to the limits: Etot,v < 4.0 x 1053 erg and fv < 0.15 (respectively, Etot,v < 3.2 x 1053 erg and fv < 0.88) for E-2 spectrum and isotropic emission. Other assumptions including softer spectra and non-isotropic scenarios have also been tested.
|
|
|
Balibrea-Correa, J., Lerendegui-Marco, J., Babiano-Suarez, V., Caballero, L., Calvo, D., Ladarescu, I., et al. (2021). Machine Learning aided 3D-position reconstruction in large LaCl3 crystals. Nucl. Instrum. Methods Phys. Res. A, 1001, 165249–17pp.
Abstract: We investigate five different models to reconstruct the 3D gamma-ray hit coordinates in five large LaCl3(Ce) monolithic crystals optically coupled to pixelated silicon photomultipliers. These scintillators have a base surface of 50 x 50 mm(2) and five different thicknesses, from 10 mm to 30 mm. Four of these models are analytical prescriptions and one is based on a Convolutional Neural Network. Average resolutions close to 1-2 mm fwhm are obtained in the transverse crystal plane for crystal thicknesses between 10 mm and 20 mm using analytical models. For thicker crystals average resolutions of about 3-5 mm fwhm are obtained. Depth of interaction resolutions between 1 mm and 4 mm are achieved depending on the distance of the interaction point to the photosensor surface. We propose a Machine Learning algorithm to correct for linearity distortions and pin-cushion effects. The latter allows one to keep a large field of view of about 70%-80% of the crystal surface, regardless of crystal thickness. This work is aimed at optimizing the performance of the so-called Total Energy Detector with Compton imaging capability (i-TED) for time-of-flight neutron capture cross-section measurements.
|
|
|
BRIKEN Collaboration(Tarifeño-Saldivia, A. et al), Tain, J. L., Domingo-Pardo, C., Agramunt, J., Algora, A., Morales, A. I., et al. (2017). Conceptual design of a hybrid neutron-gamma detector for study of beta-delayed neutrons at the RIB facility of RIKEN. J. Instrum., 12, P04006–22pp.
Abstract: BRIKEN is a complex detection system to be installed at the RIB-facility of the RIKEN Nishina Center. It is aimed at the detection of heavy-ion implants, β-particles, γ-rays and β-delayed neutrons. The whole detection setup involves the Advanced Implantation Detection Array (AIDA), two HPGe Clover detectors and a large set of 166 counters of 3He embedded in a high-density polyethylene matrix. This article reports on a novel methodology developed for the conceptual design and optimisation of the 3He-tubes array, aiming at the best possible performance in terms of neutron detection. The algorithm is based on a geometric representation of two selected parameters of merit, namely, average neutron detection efficiency and efficiency flatness, as a function of a reduced number of geometric variables. The response of the detection system itself, for each configuration, is obtained from a systematic MC-simulation implemented realistically in Geant4. This approach has been found to be particularly useful. On the one hand, due to the different types and large number of 3He-tubes involved and, on the other hand, due to the additional constraints introduced by the ancillary detectors for charged particles and gamma-rays. Empowered by the robustness of the algorithm, we have been able to design a versatile detection system, which can be easily re-arranged into a compact mode in order to maximize the neutron detection performance, at the cost of the gamma-ray sensitivity. In summary, we have designed a system which shows, for neutron energies up to 1(5) MeV, a rather flat and high average efficiency of 68.6%(64%) and 75.7%(71%) for the hybrid and compact modes, respectively. The performance of the BRIKEN system has been also quantified realistically by means of MC-simulations made with different neutron energy distributions.
|
|
|
BRIKEN Collaboration(Tolosa-Delgado, A. et al), Agramunt, J., Tain, J. L., Algora, A., Domingo-Pardo, C., Morales, A. I., et al. (2019). Commissioning of the BRIKEN detector for the measurement of very exotic beta-delayed neutron emitters. Nucl. Instrum. Methods Phys. Res. A, 925, 133–147.
Abstract: A new detection system has been installed at the RIKEN Nishina Center (Japan) to investigate decay properties of very neutron-rich nuclei. The setup consists of three main parts: a moderated neutron counter, a detection system sensitive to the implantation and decay of radioactive ions, and gamma-ray detectors. We describe here the setup, the commissioning experiment and some selected results demonstrating its performance for the measurement of half-lives and beta-delayed neutron emission probabilities. The methodology followed in the analysis of the data is described in detail. Particular emphasis is placed on the correction of the accidental neutron background.
|
|
|
Capozzi, F., & Saviano, N. (2022). Neutrino Flavor Conversions in High-Density Astrophysical and Cosmological Environments. Universe, 8(2), 94–23pp.
Abstract: Despite being a well understood phenomenon in the context of current terrestrial experiments, neutrino flavor conversions in dense astrophysical environments probably represent one of the most challenging open problems in neutrino physics. Apart from being theoretically interesting, such a problem has several phenomenological implications in cosmology and in astrophysics, including the primordial nucleosynthesis of light elements abundance and other cosmological observables, nucleosynthesis of heavy nuclei, and the explosion of massive stars. In this review, we briefly summarize the state of the art on this topic, focusing on three environments: early Universe, core-collapse supernovae, and compact binary mergers.
|
|
|
Cappuzzello, F., Rea, C., Bonaccorso, A., Bondi, M., Carbone, D., Cavallaro, M., et al. (2012). New structures in the continuum of C-15 populated by two-neutron transfer. Phys. Lett. B, 711(5), 347–352.
Abstract: The C-13(O-18,O-16)C-15 reaction has been studied at 84 MeV incident energy. The ejectiles have been detected at forward angles and C-15 excitation energy spectra have been obtained up to about 20 MeV. Several known bound and resonant states of C-15 have been identified together with two unknown structures at 10.5 MeV (FWHM = 2.5 MeV) and 13.6 MeV (FWHM = 2.5 MeV). Calculations based Oil the removal of two uncorrelated neutrons from the projectile describe a significant part of the continuum observed in the energy spectra. In particular the structure at 10.5 MeV is dominated by a resonance of C-15 near the C-13 + n + n threshold. Similar structures are found in nearby nuclei such as C-14 and Be-11.
|
|