|
Herrero, V., Toledo, J., Catala, J. M., Esteve, R., Gil, A., Lorca, D., et al. (2012). Readout electronics for the SiPM tracking plane in the NEXT-1 prototype. Nucl. Instrum. Methods Phys. Res. A, 695, 229–232.
Abstract: NEXT is a new experiment to search for neutrinoless double beta decay using a 100 kg radio-pure high-pressure gaseous xenon TPC with electroluminescence readout. A large-scale prototype with a SiPM tracking plane has been built. The primary electron paths can be reconstructed from time-resolved measurements of the light that arrives to the SiPM plane. Our approach is to measure how many photons have reached each SiPM sensor each microsecond with a gated integrator. We have designed and tested a 16-channel front-end board that includes the analog paths and a digital section. Each analog path consists of three different stages: a transimpedance amplifier, a gated integrator and an offset and gain control stage. Measurements show good linearity and the ability to detect single photoelectrons.
|
|
|
Meloni, D., Morisi, S., & Peinado, E. (2011). Neutrino phenomenology and stable dark matter with A(4). Phys. Lett. B, 697(4), 339–342.
Abstract: We present a model based on the A(4) non-Abelian discrete symmetry leading to a predictive five-parameter neutrino mass matrix and providing a stable dark matter candidate. We found an interesting correlation among the atmospheric and the reactor angles which predicts theta(23) similar to pi/4for very small reactor angle and deviation from maximal atmospheric mixing for large theta(13). Only normal neutrino mass spectrum is possible and the effective mass entering the neutrinoless double beta decay rate is constrained to be vertical bar m(ee)vertical bar > 4 x 10(-4) eV.
|
|
|
NEXT Collaboration(Renner, J. et al), Alvarez, V., Carcel, S., Cervera-Villanueva, A., Diaz, J., Ferrario, P., et al. (2015). Ionization and scintillation of nuclear recoils in gaseous xenon. Nucl. Instrum. Methods Phys. Res. A, 793, 62–74.
Abstract: Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope a-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.
|
|