|
ANTARES Collaboration(Albert, A. et al), Alves, S., Calvo, D., Carretero, V., Gozzini, R., Hernandez-Rey, J. J., et al. (2022). Search for non-standard neutrino interactions with 10 years of ANTARES data. J. High Energy Phys., 07(7), 048–22pp.
Abstract: Non-standard interactions of neutrinos arising in many theories beyond the Standard Model can significantly alter matter effects in atmospheric neutrino propagation through the Earth. In this paper, a search for deviations from the prediction of the standard 3-flavour atmospheric neutrino oscillations using the data taken by the ANTARES neutrino telescope is presented. Ten years of atmospheric neutrino data collected from 2007 to 2016, with reconstructed energies in the range from similar to 16 GeV to 100 GeV, have been analysed. A log-likelihood ratio test of the dimensionless coefficients epsilon(mu tau) and epsilon(tau tau) – epsilon(mu mu) does not provide clear evidence of deviations from standard interactions. For normal neutrino mass ordering, the combined fit of both coefficients yields a value 1.7 sigma away from the null result. However, the 68% and 95% confidence level intervals for epsilon(mu tau) and epsilon(tau tau) – epsilon(mu mu), respectively, contain the null value. Best fit values, one standard deviation errors and bounds at the 90% confidence level for these coefficients are given for both normal and inverted mass orderings. The constraint on epsilon(mu tau) is among the most stringent to date and it further restrains the strength of possible non-standard interactions in the μ- tau sector.
|
|
|
ANTARES Collaboration(Albert, A. et al), Barrios-Marti, J., Coleiro, A., Colomer, M., Gozzini, R., Hernandez-Rey, J. J., et al. (2019). Measuring the atmospheric neutrino oscillation parameters and constraining the 3+1 neutrino model with ten years of ANTARES data. J. High Energy Phys., 06(6), 113–23pp.
Abstract: The ANTARES neutrino telescope has an energy threshold of a few tens of GeV. This allows to study the phenomenon of atmospheric muon neutrino disappearance due to neutrino oscillations. In a similar way, constraints on the 3+1 neutrino model, which foresees the existence of one sterile neutrino, can be inferred. Using data collected by the ANTARES neutrino telescope from 2007 to 2016, a new measurement of m 2 and (23) has been performed which is consistent with world best-fit values and constraints on the 3+1 neutrino model have been derived.
|
|
|
ANTARES Collaboration(Albert, A. et al), Barrios-Marti, J., Coleiro, A., Hernandez-Rey, J. J., Illuminati, G., Lotze, M., et al. (2017). Search for relativistic magnetic monopoles with five years of the ANTARES detector data. J. High Energy Phys., 07(7), 054–19pp.
Abstract: A search for magnetic monopoles using five years of data recorded with the ANTARES neutrino telescope from January 2008 to December 2012 with a total live time of 1121 days is presented. The analysis is carried out in the range beta > 0.6 of magnetic monopole velocities using a strategy based on run-by-run Monte Carlo simulations. No signal above the background expectation from atmospheric muons and atmospheric neutrinos is observed, and upper limits are set on the magnetic monopole flux ranging from 5.7 x 10(-16) to 1.5 x 10(-18) cm(-2).s(-1).sr(-1).
|
|
|
Baxter, D., Collar, J. I., Coloma, P., Dahl, C. E., Esteban, I., Ferrario, P., et al. (2020). Coherent elastic neutrino-nucleus scattering at the European Spallation Source. J. High Energy Phys., 02(2), 123–38pp.
Abstract: The European Spallation Source (ESS), presently well on its way to completion, will soon provide the most intense neutron beams for multi-disciplinary science. Fortuitously, it will also generate the largest pulsed neutrino flux suitable for the detection of Coherent Elastic Neutrino-Nucleus Scattering (CE nu NS), a process recently measured for the first time at ORNL's Spallation Neutron Source. We describe innovative detector technologies maximally able to profit from the order-of-magnitude increase in neutrino flux provided by the ESS, along with their sensitivity to a rich particle physics phenomenology accessible through high-statistics, precision CE nu NS measurements.
|
|
|
Double Chooz collaboration(Abrahao, T. et al), & Novella, P. (2021). Reactor rate modulation oscillation analysis with two detectors in Double Chooz. J. High Energy Phys., 01(1), 190–18pp.
Abstract: A theta (13) oscillation analysis based on the observed antineutrino rates at the Double Chooz far and near detectors for different reactor power conditions is presented. This approach provides a so far unique simultaneous determination of theta (13) and the total background rates without relying on any assumptions on the specific background contributions. The analysis comprises 865 days of data collected in both detectors with at least one reactor in operation. The oscillation results are enhanced by the use of 24.06 days (12.74 days) of reactor-off data in the far (near) detector. The analysis considers the nu <mml:mo stretchy=“true”><overbar></mml:mover>e interactions up to a visible energy of 8.5 MeV, using the events at higher energies to build a cosmogenic background model considering fast-neutrons interactions and Li-9 decays. The background-model-independent determination of the mixing angle yields sin(2)(2 theta (13)) = 0.094 0.017, being the best-fit total background rates fully consistent with the cosmogenic background model. A second oscillation analysis is also performed constraining the total background rates to the cosmogenic background estimates. While the central value is not significantly modified due to the consistency between the reactor-off data and the background estimates, the addition of the background model reduces the uncertainty on theta (13) to 0.015. Along with the oscillation results, the normalization of the anti-neutrino rate is measured with a precision of 0.86%, reducing the 1.43% uncertainty associated to the expectation.
|
|
|
Double Chooz collaboration(de Kerret, H. et al), & Novella, P. (2018). Yields and production rates of cosmogenic Li-9 and He-8 measured with the Double Chooz near and far detectors. J. High Energy Phys., 11(11), 053–20pp.
Abstract: The yields and production rates of the radioisotopes Li-9 and He-8 created by cosmic muon spallation on C-12, have been measured by the two detectors of the Double Chooz experiment. The identical detectors are located at separate sites and depths, which means that they are subject to different muon spectra. The near (far) detector has an overburden of approximate to 120 m.w.e. (approximate to 300 m.w.e.) corresponding to a mean muon energy of 32.1 +/- 2.0 GeV (63.7 +/- 5.5 GeV). Comparing the data to a detailed simulation of the Li-9 and He-8 decays, the contribution of the He-8 radioisotope at both detectors is found to be compatible with zero. The observed Li-9 yields in the near and far detectors are 5.51 +/- 0.51 and 7.90 +/- 0.51, respectively, in units of 10(-8-1)g(-1)cm(2). The shallow overburdens of the near and far detectors give a unique insight when combined with measurements by KamLAND and Borexino to give the first multi-experiment, data driven relationship between the Li-9 yield and the mean muon energy according to the power law and Y-0 = (0.43 +/- 0.11) x 10(-8-1)g(-1)cm(2). This relationship gives future liquid scintillator based experiments the ability to predict their cosmogenic Li-9 background rates.
|
|
|
KM3NeT Collaboration(Adrian-Martinez, S. et al), Barrios-Marti, J., Calvo, D., Hernandez-Rey, J. J., Illuminati, G., Lotze, M., et al. (2017). Intrinsic limits on resolutions in muon- and electron-neutrino charged-current events in the KM3NeT/ORCA detector. J. High Energy Phys., 05(5), 008–39pp.
Abstract: Studying atmospheric neutrino oscillations in the few-GeV range with a multimegaton detector promises to determine the neutrino mass hierarchy. This is the main science goal pursued by the future KM3NeT/ORCA water Cherenkov detector in the Mediterranean Sea. In this paper, the processes that limit the obtainable resolution in both energy and direction in charged-current neutrino events in the ORCA detector are investigated. These processes include the composition of the hadronic fragmentation products, the subsequent particle propagation and the photon-sampling fraction of the detector. GEANT simulations of neutrino interactions in seawater produced by GENIE are used to study the effects in the 1-20 GeV range. It is found that fluctuations in the hadronic cascade in conjunction with the variation of the inelasticity y are most detrimental to the resolutions. The effect of limited photon sampling in the detector is of significantly less importance. These results will therefore also be applicable to similar detectors/media, such as those in ice.
|
|
|
KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Bariego-Quintana, A., Calvo, D., Carretero, V., Cecchini, V., et al. (2024). Measurement of neutrino oscillation parameters with the first six detection units of KM3NeT/ORCA. J. High Energy Phys., 10(10), 206–31pp.
Abstract: KM3NeT/ORCA is a water Cherenkov neutrino detector under construction and anchored at the bottom of the Mediterranean Sea. The detector is designed to study oscillations of atmospheric neutrinos and determine the neutrino mass ordering. This paper focuses on an initial configuration of ORCA, referred to as ORCA6, which comprises six out of the foreseen 115 detection units of photo-sensors. A high-purity neutrino sample was extracted, corresponding to an exposure of 433 kton-years. The sample of 5828 neutrino candidates is analysed following a binned log-likelihood method in the reconstructed energy and cosine of the zenith angle. The atmospheric oscillation parameters are measured to be sin(2)theta(23) = 0.51(-0.05)(+0.04), and Delta m(31)(2) = 2.18(-0.35)(+0.25) x 10(-3) eV(2) boolean OR {-2.25,-1.76} x 10(-3) eV(2) at 68% CL. The inverted neutrino mass ordering hypothesis is disfavoured with a p-value of 0.25.
|
|
|
KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Calvo, D., Carretero, V., Colomer, M., Garcia Soto, A., et al. (2022). Combined sensitivity of JUNO and KM3NeT/ORCA to the neutrino mass ordering. J. High Energy Phys., 03(3), 055–31pp.
Abstract: This article presents the potential of a combined analysis of the JUNO and KM3NeT/ORCA experiments to determine the neutrino mass ordering. This combination is particularly interesting as it significantly boosts the potential of either detector, beyond simply adding their neutrino mass ordering sensitivities, by removing a degeneracy in the determination of Delta M-31(2) between the two experiments when assuming the wrong ordering. The study is based on the latest projected performances for JUNO, and on simulation tools using a full Monte Carlo approach to the KM3NeT/ORCA response with a careful assessment of its energy systematics. From this analysis, a 5 sigma determination of the neutrino mass ordering is expected after 6 years of joint data taking for any value of the oscillation parameters. This sensitivity would be achieved after only 2 years of joint data taking assuming the current global best-fit values for those parameters for normal ordering.
|
|
|
KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Calvo, D., Carretero, V., Colomer, M., Hernandez-Rey, J. J., et al. (2021). Sensitivity to light sterile neutrino mixing parameters with KM3NeT/ORCA. J. High Energy Phys., 10(10), 180–26pp.
Abstract: KM3NeT/ORCA is a next-generation neutrino telescope optimised for atmospheric neutrino oscillations studies. In this paper, the sensitivity of ORCA to the presence of a light sterile neutrino in a 3+1 model is presented. After three years of data taking, ORCA will be able to probe the active-sterile mixing angles theta(14), theta(24), theta(34) and the effective angle theta(mu e), over a broad range of mass squared difference Delta m(41)(2) similar to [10(-5), 10] eV(2), allowing to test the eV-mass sterile neutrino hypothesis as the origin of short baseline anomalies, as well as probing the hypothesis of a very light sterile neutrino, not yet constrained by cosmology. ORCA will be able to explore a relevant fraction of the parameter space not yet reached by present measurements.
|
|