|
Hinarejos, M., Bañuls, M. C., & Perez, A. (2013). A Study of Wigner Functions for Discrete-Time Quantum Walks. J. Comput. Theor. Nanosci., 10(7), 1626–1633.
Abstract: We perform a systematic study of the discrete time Quantum Walk on one dimension using Wigner functions, which are generalized to include the chirality (or coin) degree of freedom. In particular, we analyze the evolution of the negative volume in phase space, as a function of time, for different initial states. This negativity can be used to quantify the degree of departure of the system from a classical state. We also relate this quantity to the entanglement between the coin and walker subspaces.
|
|